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Abstract
Objective To obtain attenuation-corrected PET images directly from non-attenuation-corrected images using a convolutional
encoder-decoder network.
Methods Brain PET images from 129 patients were evaluated. The network was designed to map non-attenuation-corrected
(NAC) images to pixel-wise continuously valued measured attenuation-corrected (MAC) PET images via an encoder-decoder
architecture. Image quality was evaluated using various evaluation metrics. Image quantification was assessed for 19 radiomic
features in 83 brain regions as delineated using the Hammersmith atlas (n30r83). Reliability of measurements was determined
using pixel-wise relative errors (RE; %) for radiomic feature values in reference MAC PET images.
Results Peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM) values were 39.2 ± 3.65 and 0.989 ±
0.006 for the external validation set, respectively. RE (%) of SUVmean was − 0.10 ± 2.14 for all regions, and only 3 of 83 regions
depicted significant differences. However, themeanRE (%) of this regionwas 0.02 (range, − 0.83 to 1.18). SUVmax hadmeanRE
(%) of − 3.87 ± 2.84 for all brain regions, and 17 regions in the brain depicted significant differences with respect toMAC images
with a mean RE of − 3.99 ± 2.11 (range, − 8.46 to 0.76). Homogeneity amongst Haralick-based radiomic features had the highest
number (20) of regions with significant differences with a mean RE (%) of 7.22 ± 2.99.
Conclusions Direct AC of PET images using deep convolutional encoder-decoder networks is a promising technique for brain
PET images. The proposed deep learning method shows significant potential for emission-based AC in PET images with
applications in PET/MRI and dedicated brain PET scanners.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00330-019-06229-1) contains supplementary
material, which is available to authorized users.

* Pardis Ghafarian
pardis.ghafarian@sbmu.ac.ir

* Mohammad Reza Ay
mohammadreza_ay@sina.tums.ac.ir

1 Research Center for Molecular and Cellular Imaging, Tehran
University of Medical Sciences, Tehran, Iran

2 Chronic Respiratory Diseases Research Center, National Research
Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid
Beheshti University of Medical Sciences, Tehran, Iran

3 PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid
Beheshti University of Medical Sciences, Tehran, Iran

4 Research Center for Nuclear Medicine, Shariati Hospital, Tehran
University of Medical Sciences, Tehran, Iran

5 Department of Biomedical Engineering, Johns Hopkins University,
Baltimore, MD, USA

6 Department of Radiology and Radiological Science, Johns Hopkins
University, Baltimore, MD, USA

7 Department of Biomedical and Health Informatics, Rajaie
Cardiovascular Medical and Research Center, Iran University of
Medical Science, Tehran, Iran

8 Department of Computer Science, University of British Columbia,
Vancouver, BC, Canada

9 Departments of Radiology and Physics & Astronomy, University of
British Columbia, Vancouver, BC, Canada

10 Department of Integrative Oncology, BC Cancer Research Centre,
Vancouver, BC, Canada

11 Department of Medical Physics and Biomedical Engineering, School
of Medicine, Tehran University of Medical Sciences, Tehran, Iran

European Radiology
https://doi.org/10.1007/s00330-019-06229-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-019-06229-1&domain=pdf
http://orcid.org/0000-0002-5383-4418
https://doi.org/10.1007/s00330-019-06229-1
mailto:pardis.ghafarian@sbmu.ac.ir
mailto:mohammadreza_ay@sina.tums.ac.ir


Key Points
• We demonstrate direct emission-based attenuation correction of PET images without using anatomical information.
• We performed radiomics analysis of 83 brain regions to show robustness of direct attenuation correction of PET images.
• Deep learning methods have significant promise for emission-based attenuation correction in PET images with potential
applications in PET/MRI and dedicated brain PET scanners.

Keywords Positron emission tomography . Brain imaging . Artificial intelligence . Deep learning . Radiomics

Abbreviations
AC Attenuation correction
CGAN Conditional generative adversarial networks
CNN Convolutional neural network
Deep-DAC Deep direct attenuation correction
FOV Field of view
GLCM Gray-level co-occurrence matrix
GLRLM Gray-level run length matrix
GLZLM Gray-level size zone matrix
GPU Graphics processing unit
LRE Long-run emphasis
MAC Measured attenuation corrected
MAE Mean absolute error
MLAA Maximum likelihood reconstruction of

activity and attenuation
MRI Magnetic resonance imaging
MSE Mean squared error
NAC Non-attenuation corrected
OSEM Ordered subset expectation maximization
PET Positron emission tomography
PSNR Peak signal-to-noise ratio
RBM Restricted Boltzmann machine
RE Relative errors
ReLU Rectified linear unit
RFV Radiomic feature values
RMSE Root mean squared error
RP Run percentage
SRE Short-run emphasis
SSIM Structural similarity index metrics
SUV Standard uptake value
SZE Size zone emphasis
TLG Total lesion glycolysis
TOF Time of flight
UTE Ultra-short echo time
VOI Volumes of interest
ZP Zone percentage
ZTE Zero echo time

Introduction

Positron emission tomography (PET) has played a pivotal role
in 3D non-invasive in vivo assessment of brain function [1–3].
PET provides information about biological processes, such as

neurotransmitter activity in the brain [4, 5] and the presence of
amyloid and tau proteins in patients with Alzheimer’s disease
[6, 7], and can be used for localization of disease using different
measurements such as glucose, receptor binding, and cerebral
blood flow [8]. Accurate quantification of uptake is an impor-
tant aspect of PET imaging for neuroscience applications [9].

For neuroimaging purposes, multi-modal PET/MRI systems
are increasingly utilized. Attenuation correction (AC) is a con-
siderable challenge for such scanners, in contrast to PET/CT
systems [10]. MRI measures spin properties of tissue and does
not directly measure attenuation information. It is challenging
to directly estimate attenuation information from MR images
due to the nonlinear relationship between MR images and the
attenuation patterns of tissues [11]. Different methods have
been proposed to address this issue such as atlas-based [12],
segmentation-based [13], and emission-based [14] methods.
For atlas- and segmentation-based AC methods [15, 16], atten-
uation maps are generated by using T1-weighted, Dixon [13,
17], short and ultra-short echo time (UTE) [17, 18], zero echo
time (ZTE) [12, 17, 19], and TWIST [20] MR sequences. For
emission-based approaches, the attenuation map is directly es-
timated from emission data utilizing TOF information without
using anatomical information [14, 21].

The latter framework (use of emission data only) also has
the potential to enable construction of dedicated brain PET
scanners towards more affordable amyloid or tau brain PET
screening programs [22]. Different emission-based methods
for AC have been proposed. An algebraic reconstruction–
based technique used simultaneously reconstructed attenua-
tion and activity maps for estimation of the attenuation coef-
ficient from emission data [23]. This method was significantly
refined with simultaneous maximum likelihood reconstruc-
tion of activity and attenuation (MLAA) [18, 24]. Different
applications for AC estimation have been explored [25, 26].

Deep learning, a class of machine learning algorithms, has
been shown to be well suited for processing of complex
datasets in order to find patterns not explicitly recognized at
the human visual level [27]. Multiple studies have begun to
examine the use of deep learning architectures for cross-
modality synthesis such as those for MRI cross sequences
[28], MRI to CT [29], MRI and CT to PET [30], and CT to
MRI [31] mappings. Specifically, some studies generated
pseudo-CT from MR images to provide attenuation map for
the brain region [29, 32–34]. Liu et al [35] synthesizes pseudo-
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CT images from uncorrected brain 18F-FDG PET images by
using a deep convolutional encoder-decoder network for AC.

In the present work, we demonstrate direct attenuation cor-
rection of PET images from non-attenuated corrected PET
images using deep direct attenuation correction (Deep-DAC)
to achieve quantitative brain PET images. Unlike other deep
learning–based methods, the proposed method in the current
study does not require anatomical information from CT or
MRI. As such, it holds potential value given that cross-
modality transformations can suffer from MRI and CT intra-
subject mis-registration, different positioning during scans,
field of view (FOV) differences between the modalities, and
organ displacement during the scan [10]. It may also more
readily enable quantitative application of dedicated PET-only
systems. We extensively evaluate the proposed method using
different image quality assessment metrics and radiomic fea-
tures in different brain regions.

Material and methods

Data acquisition

Our studywas approved by an Institutional ReviewBoard (IRB).
Written informed consent had been waived by our IRB commit-
tee. In total, 129 patients undergoing brain PET imaging from
2015 to 2018 were included in this study. Imaging data were
collected using a GE Discovery 690 PET/CT scanner. Detailed
patient demographic information is shown in Table 1. All pa-
tients fasted for at least 6 h prior to scan and were injected with
333.0 ± 62.9 MBq 18F-FDG after 60-min uptake. Blood glucose
levels were under 150 mg/dL (8.3 mmol/L). PET images were

reconstructed using the ordered subset expectation maximization
(OSEM) algorithm with 2 iterations and 24 subsets with 6.5-mm
FWHM Gaussian post-smoothing. All PET images were recon-
structed into 256 × 256 matrices with voxel dimensions 2.73 ×
2.73 × 3.27 mm3. All patients were scanned without contrast in
spiral mode via GE VCT64 slice of GE Discovery 690 PET/CT
scanner with a pitch factor 0.98:1; smart mAs; 50–60, kVp; 120
and 140, 1-s gantry rotation time, with matrix size of 512 × 512
and voxel size 1.36 × 1.36 × 3.27 mm3.

The Deep-DAC architecture

The proposed Deep-DAC network architecture consists of
encoder and decoder networks (Fig. 1) and was implemented
in TensorFlow [36]. The encoder has the architecture of a
convolutional network that learns feature maps from the input
images. The encoder component consisted of a series of
convolutional layers with 3 × 3 kernels followed by a rectified
linear unit (ReLU) activation function. Batch normalization
layer was then applied to stabilize and accelerate the training
process. Max pooling layer with stride 2 was used for down-
sampling. For each down-sampling step, the number of fea-
ture channels was doubled.

The subsequent decoder component maps the encoder out-
put to the recovered high-resolution images. The decoder also
consisted of a series of convolutional layers followed by a
ReLU activation function. Transposed convolutional layers
with stride 2 followed by a ReLU activation function were
used for each up-sampling step where the number of feature
channels was halved. Skip connections were used where the
output of each layer in the encoder network was concatenated
with the corresponding layer in the decoder network. This

Table 1 Demographic
information of patients included
in this study

Characterization Train Test External validation

Value % Value % Value %

No. of patient Normal 47 51.64 10 50 10 55.55

Epilepsy 29 31.86 7 35 8 44.45

Cancer and metastasis 15 16.43 3 15 – –

Gender Male 49 53.84 12 60 11 61.11

Female 42 45.65 8 40 7 38.39

Age (year) Mean 32.34 32.1 34
Standard deviation 14.6 16.7 14.91

Median 29 27 32

Range 65 59 51

Minimum 10 15 16

Maximum 75 74 67

Percentiles 25 21 19 18

Percentiles 50 29 27 32

Percentiles 75 40.5 40.75 45
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helped to address the gradient vanishing problem that occurs
in deep and complex architectures.

Non-attenuation-corrected (NAC) 2D PET image slices are
used as input to the encoder. The decoder then aims to recon-
struct pixel-wise continuously valued measured attenuation-
corrected (MAC) 2D images with a 256 × 256 matrix size. All
2D image slices for each patient were synthesized by the net-
work in order to generate the entire 3D volume of the PETscan.

Data augmentation

We used several data augmentation methods in order to build
more robust deep architectures and to avoid overfitting. Affine
transformations with various sub-transforms were performed
such as rotations (± 15°), translations (± 10% horizontally and
vertically), shearing (± 10°), and zooming (12%) which were
randomly applied to the training set images. Adding such
variation to the training data helped the network to learn fea-
tures that are invariant to these transformations. Data augmen-
tation was performed only on training sets.

Training and optimization

The network was trained by minimizing a mean squared error
(MSE) loss function that quantified the difference between the
network-generated AC image and the MAC ground truth. The
Adam optimizer with learning rate of 0.001 was used to min-
imize the loss function. We performed training and
hyperparameter tuning of Deep-DAC with 91 patients
(34,550 2D axial slices augmented; 6910 slice × 4 method +

6910 original = 34,550) for training, and 20 patients (2220 2D
axial slices) for testing. To ensure network convergence, the
network was trained for 1000 epochs with a mini-batch of 30
images. An epoch is defined as a single pass through the entire
training set. An external validation set of 18 patients (1998 2D
axial slices) was used to only evaluate the network. This ex-
ternal validation set was not used for fine-tuning the network
hyperparameters. There was no patient overlap between the
training, testing, and validation sets.

Evaluation strategy

Training, testing, and external validation sets have been strictly
separated throughout all analysis steps, and further quantitative
analysis was performed on external validation sets. Quality of
the synthesized images was quantitatively assessed by five dif-
ferent metrics: mean squared error (MSE), root mean squared
error (RMSE), mean absolute error (MAE), peak signal-to-noise
ratio (PSNR), and structural similarity index metrics (SSIM).
These metrics are defined in supplemental data.

To further evaluate quantitative performance of our pro-
posed Deep-DAC framework, radiomic features of different
brain regions were assessed. To assess quantification in the
PET images, we defined 83 volumes of interest (VOI) in the
brain region based on the Hammers N30R83 maximum prob-
ability atlas [37]. Image space normalization was carried prior
to VOI definition. VOIs for each brain region were then
exported. Further analysis was performed on original images
to avoid the effect of space normalization on quantification of
MAC and Deep-DAC images.

Fig. 1 The Deep-DAC architecture schematic illustration, paired encoder-decoder of Deep-DAC network and detail of each part of it
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In our work, the 83 VOIs were mapped to both Deep-DAC
and reference MAC images (Supplemental Table 1). All VOIs
were quantified using 19 robust radiomic features based on
previous study [38] using the Pyradiomics python library [39].
Specifically, SUV, intensity, and second- and high-order tex-
ture features were extracted from the VOIs. Detailed informa-
tion for these radiomic features is shown in Table 2. We de-
termined the relative errors (RE) (%) in the radiomic feature
values (RFV) between our proposedDeep-DAC and reference
MAC images:

RE %ð Þ ¼ DeepDACRFV−MACRFV

MACRFV
� 100% ð1Þ

Statistical analysis

All statistical analyses were carried out by R (www.r-project.
com). Paired-sample t tests were used for statistical analysis to
compare radiomic features between Deep-DAC and CT-based
AC (reference MAC) images in all 83 brain VOIs of 18 of the
external validation set (1494 paired values for 19 radiomic
features). The significance level was set at p value < 0.05 for
all comparisons.

Results

Supplemental Figure 1 illustrates the learning curves of the
training and test sets. The network converged after about 100

epochs of training. The network converged to an MSE value
of 1.02e−4 and 1.69e−4 for training and test sets, respectively.

Figure 2a and b show examples of acquired NAC, MAC,
and Deep-DAC images as well as bias maps between these
images. Deep-DAC provided qualitatively accurate synthetic
attenuation-corrected PET images of different brain regions
including air, skull, and brain soft tissues.

Table 3 summarizes statistical analysis of image quality
metrics, for the test and external validation sets. RMSE of
(1.19 ± 0.5)e−2 and (1.19 ± 0.49)e−2 for testing and external
validation set was obtained, indicating that the network was
able to successfully generalize to new data in the validation set
and was not overfit to the training and test sets. The PSNR and
SSIM values for the test and external validation sets were
38.7 ± 3.54 and 39.22 ± 3.65 and 0.988 ± 0.006 and 0.989 ±
0.006, respectively.

Further quantitative analysis of the brain region was con-
ducted by examining RE in the VOI. Figures 3 and 4 show the
RE radiomic features and the respective t test p values be-
tween the Deep-DAC and MAC images for the different brain
regions across all 18 subjects in the validation set. Figure 5
shows box plots for the RE of each radiomic feature in the
brain. Table 4 summarizes the mean ± standard deviation and
range (max–min) for the RE in all brain regions and sub-
regions with a significant difference in RE (p value < 0.05),
and more details of regions are presented in Supplemental
Table 2.

The RE of SUVmean was − 0.1 ± 2.14 for all regions. Only
three regions had a significant difference with the MAC

Table 2 Radiomic features (SUV,
intensity, and second- and high-
order texture feature) were
extracted from each brain region

Radiomic feature category Radiomic feature Radiomic feature names

SUV SUV SUVmean

SUVmax

Total lesion glycolysis (TLG)

First-order feature Intensity Q1

Median

Q3

AUC

Energy

Entropy

Kurtosis

Second-order texture Gray-level co-occurrence matrix (GLCM) Dissimilarity

Entropy

Energy

Homogeneity

High-order textures Gray-level run length matrix (GLRLM) Run percentage (RP)

Long-run emphasis (LRE)

Short-run emphasis (SRE)

Gray-level size zone matrix (GLZLM) Size zone emphasis (SZE)

Zone percentage (ZP)
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Fig. 2 NAC, non-attenuation correction; MAC, CT-based attenuation correction; DeepDAC, attenuation correction using Deep-DAC. a A 65-year-old
male normal patient. b A 56-year-old female epilepsy patient with significant left fronto-parietal lobe and temporal lobe abnormality
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image. The mean of difference for these regions was 0.02 with
a range of − 0.83 to 1.18. SUVmax had a mean RE of − 3.87 ±
2.84 for all brain regions where 17 regions had a significant
difference from theMAC image with a meanRE of − 3.99 and
range of − 8.46 to 0.76. The radiomic feature of homogeneity
(from GLCM) had the most sub-regions (20 of 83) with a
significant difference between MAC and Deep-DAC with a
mean RE of 7.22. In all brain sub-regions, the mean RE of
homogeneity was 2.5 ± 3.65.

The left side of the putamen and the inferior frontal gyrus
in left frontal lobe of the brain sub-regions exhibited signif-
icant differences in radiomic features of dissimilarity (RE%,
− 11.44 and − 6.75; p value, 0.001 and 0.02), energy (RE%,
11.15 and 4.23; p value, 0.02 and 0.01), and homogeneity
(RE%, 10.76 and 9.01; p value, 0.001 and 0.001) from
GLCM. In addition, ZP (RE%, – 5.75 and − 8.65; p value,
0.002 and 0.03), SRE (RE%, – 0.43 and − 0.74; p value,
0.001 and 0.02), LRE (RE%, 2.18 and 3.30; p value, 0.02
and 0.02), and RP (RE%, – 0.50 and − 0.93; p value, 0.01
and 0.03) from GLRLM in high-order texture analysis had
significant differences in these regions.

Discussion

In the present study, we propose a new approach to perform
direct attenuation correction of PET images without using
anatomical information. A deep convolutional encoder-
decoder was developed where a NAC image was used as input
to the encoder and was subsequently reconstructed by the
decoder to directly produce an attenuation-corrected PET im-
age. Further, we performed different image quality assess-
ments with several intensity and structural measures. A total
of 83 brain sub-regions for 18 patients (external validation set)
were assessed quantitatively with 90 radiomic features to en-
sure quantitative accuracy of this approach.

RMSE ofMAC and generated Deep-DAC images was (1.19
± 0.5)e−2. Ratio between themaximumpossible power of a signal
and noise calculated as PSNR was 38.70 ± 3.54. The SSIM be-
tween the MAC and Deep-DAC images, which measures struc-
tural similarity, was about 0.988 ± 0.006. Quantitative analysis of
83 brain regions with radiomic features shows high repeatability
of the radiomic features across the proposed ACmethods. Of the
1596 datapoints that were analyzed for different regions and

radiomic features, only 164 datapoints had significant RE of
0.3 ± 3.2% whereas most of the data had no significant RE.

Deep learning–based approaches have been previously
employed towards AC for PET images. An approach has been
to generate pseudo-CT images from MRI images [32, 33, 35]
and, in a recent study [34], NAC images were used to generate
the pseudo-CT images for AC of PET images. Cross-modality
mappings, such as from MRI to CT, involve transformation of a
proton density map to an electron density map [10]. Cross-
modality transformations can suffer from MRI and CT intra-
subject mis-registration, different positioning during scans, field
of view (FOV) differences between the modalities, and organ
displacement during the scan [10]. To address these issues, we
generated the attenuation-corrected images directly from the PET
emission data without the need of anatomical image information.

Liu et al [32] developed and evaluated deep learning–based
AC of brain PET images. They generated pseudo-CT scans
from MR images and reported a dice similarity coefficient of
0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803
± 0.021 for bone. For quantitative brain analysis, mean errors
of less than 1% in most brain regions were reported, though
the technique was evaluated only in patients without specific
neurologic abnormalities. In the present study, we included
both normal and abnormal patients to provide a heterogeneous
dataset. Neurologic abnormalities present in the dataset in-
cluded patients with brain tumors, brain metastasis, and epi-
lepsy. The proposed method was shown to perform well for
both PET images of 10 normal and 8 abnormal patients in
external validation set. Additionally, we applied data augmen-
tation to our training set to prevent overfitting on the training
set and to help build a robust deep neural network architecture.

A study performed by Spuhler et al [34] used convolutional
neural network to synthesize patient-specific transmission data for
PET AC neuroimages from T1-weighted MR images. Spuhler
et al reported mean bias for generated transmission data − 1.06
± 0.81% and global biases of static PET uptake − 0.49 ± 1.7%,
and − 1.52 ± 0.73% for 11C-WAY-100635 and 11C-DASB scan,
respectively. In our proposed method, the different regions of the
brain had a mean RE of − 0.1 ± 2.14 for SUVmean where 3 sub-
regions had significant (p value < 0.05) differences with a mean
RE of 0.02.

A recent study performed by Liu et al [35] generated pseudo-
CT images from 18F-FDG NAC data of brain PET. A MAE of
111 ± 16HU and a less than 1% average error in the quantitative
analysis relative to the ground truth PETwere reported. Liu et al

Table 3 Statistical analysis of image quality metrics.MSEmean squared error, RMSE root mean squared error,MAEmean absolute error, PSNR peak
signal-to-noise ratio, SSIM structural similarity index metrics

Dataset MSE RMSE MAE PSNR SSIM

Test 1.80e−4 (0.23e−4) 1.19e−2 (0.5e−2) 1.80e−3 (0.80e−3) 38.70 (3.54) 0.988 (0.006)

Validation 1.75e−4 (0.17e−4) 1.19e−2 (0.49e−2) 1.79e−3 (0.83e−3) 39.22 (3.65) 0.989 (0.006)
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Fig. 3 Heat map depicting
relative error of 19 radiomic
features across 83 regions of brain
in Deep-DAC and MAC

Eur Radiol



Fig. 4 Heat map depicting
p value of t test in relative error of
19 radiomic features across 83
regions of brain in Deep-DAC
and MAC
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Fig. 5 Relative error box plot of radiomic features

Table 4 Summary of the mean ± std and range (Max–Min) of RE in all brain regions and the sub-region of brain with significant difference (p value < 0.05)

Radiomic features Radiomic feature
name

RE (mean ± std)
All region

RE (Min–Max)
All region

Mean RE
Sig. region

RE Sig. region
(Min–Max)

Number of
region

SUV SUVmean − 0.1 ± 2.14 − 4.88 to 6.69 0.02 − 0.83 to 1.18 3

SUVmax − 3.87 ± 2.84 − 9.49 to 10.02 − 3.99 − 8.46 to 0.76 17

TLG 0.07 ± 1.88 − 4.3 to 5.12 − 0.61 − 1.4 to 0.3 4

Intensity Q1 0.65 ± 2.92 − 6.66 to 8.38 0.14 − 3.21 to 5.09 4

Median 0.91 ± 2.65 − 5.16 to 6.34 1.6 − 2.03 to 5.07 5

Q3 − 0.09 ± 1.71 − 4.14 to 2.75 0.72 − 1.07 to 1.33 4

AUC − 0.26 ± 1.89 − 4.32 to 6.04 − 1.42 − 3.36 to 1.35 4

Kurtosis 0.71 ± 4.54 − 9.58 to 12.71 − 2.16 − 9.57 to 7.94 6

Entropy 0.16 ± 1.04 − 2.51 to 2.91 0.82 − 2.36 to 2.91 9

Energy 0.03 ± 4.61 − 9.41 to 12.99 0.28 − 9.41 to 11.46 8

GLCM Homogeneity 2.5 ± 3.65 − 3.92 to 12.86 7.22 − 0.42 to 12.86 20

Energy 0.65 ± 4.96 − 10.16 to 12.87 5.43 1.29 to 11.15 6

Entropy − 0.18 ± 0.77 − 3.01 to 1.81 − 0.45 − 2.23 to 1.12 10

Dissimilarity − 1.42 ± 2.81 − 11.44 to 4.88 − 6.02 − 11.44 to − 2.66 11

GLRLM SRE − 0.1 ± 0.24 − 0.74 to 0.47 − 0.39 − 0.073 to 0.23 14

LRE 0.42 ± 1.2 − 2.33 to 3.3 2.15 − 0.44 to 3.29 11

RP − 0.09 ± 0.3 − 0.93 to 0.69 − 0.37 − 0.92 to 0.03 11

GLZLM SZE − 0.49 ± 1.48 − 7.26 to 2.62 − 2.65 − 7.25 to 1.58 6

ZP − 1.55 ± 3.19 − 8.65 to 7.84 − 6.21 − 8.64 to 4.34 11
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calculated the error as an averagewithin the entire volume of the
ROI whereas in this current study, 83 sub-regions of the brain
were used to quantify 19 radiomic features. ARE of each region
with significant value were present in a heat map in Figs. 3 and
4. The radiomic features of SUVmax (− 3.87 ± 2.84), homoge-
neity from GLCM (2.5 ± 3.65), dissimilarity from GLCM
(− 1.42 ± 2.81), and ZP from GLZLM (− 1.55 ± 3.19) had the
highest variability in radiomic features. All other radiomic fea-
tures had a RE of less than 1%. Typically, in radiomic studies,
radiomic features with variances that are less than ± 5% are
considered highly robust features. Such variability in radiomic
features may be due to the image acquisition process, recon-
struction, segmentation, or feature extraction algorithms.

Recent studies included TOF information to improve accu-
racy of synthesize μ-maps [40]. Mehranian et al [14] proposed a
MRI-guided MLAA algorithm for emission-based AC of
whole-body PET/MR images. They also compared their method
with MLAA algorithms proposed by Rezaei et al [41] and
Salomon et al [42]. Mehranian et al [14] reported percent error
in the estimated activity of clinical FDG PET for different tissue
classes: MLAArezai has − 10.4 ± 19, 19.9 ± 38.9, and − 17.8 ±
15.5;MLAAsalomon − 2.1 ± 21.6, 18.2 ± 32.2, and − 17.4 ± 14.9;
MLAAmehranian − 0.8 ± 20.2, 1.97 ± 22.9, and − 5.5 ± 19.2 per-
cent errors for fat soft tissue, lung, and bone, respectively. In the
present study, the activity of 18F-FDG PET was assessed by
SUVmean, SUVmax, and TLG and had RE (%) of − 0.1 ± 2.14
(− 4.88 to 6.69), − 3.87 ± 2.84 (− 9.49 to 10.02), and 0.07 ± 1.88
(− 4.3 to 5.12), respectively. The proposed deep learning–based
method for AC by emission data shows less RE in soft tissue
compared with previous studies.

A multi-center study performed by Ladefoged et al [43]
evaluated the 11 clinically feasible brain PET/MRI AC tech-
niques with respect to CT-based attenuation-corrected images.
Ladefoged et al [43] reported a global percentage bias for
vendor-implemented methods of MR-ACDIXON (− 11.3 ±
3.5), MR-ACUTE (− 5.7 ± 2.0); for template/atlas-based
methods of MR-ACSEGBONE (− 1.7 ± 3.6), MR-ACUCL (0.8
± 1.2), MR-ACMAXPROB (− 0.4 ± 1.6), MR-ACBOSTON (− 0.3
± 1.8), and MR-ACONTARIO (− 4.3 ± 3.6); for segmentation-
based methods of MR-ACCAR-RiDR (− 0.4 ± 1.9), MR-
ACMUNICH (3.7 ± 2.1), and MR-ACRESOLUTE (0.3 ± 1.7)%;
and finally for methods based on simultaneous reconstruction
of attenuation and emissionMR-ACMLAA (− 1.9 ± 2.6). All 11
methods have an acceptable percentage bias (± 5% relative to
CT-based image). The proposed deep learning–based method
also showed the excellent performance of direct AC using
PET emission data with an RE of − 0.1 ± 2.35 (− 3.87 to 2.5)
in 19 radiomic features.

Our proposed method has several limitations. Firstly,
there were a limited number of patients for training and
evaluation. We used PET brain images of 111 patients in
the training set. However, deep learning methods typically
involve a much larger dataset that reflects all the

variability between patients. To address this, we included
both 62 abnormal and 67 normal patients to provide the
network with a heterogeneous dataset. The network was
able to generalize to new data and performed very well on
the external validation set of 18 patients. However, the
generalizability on to actual clinical dataset including pa-
tient with marked atrophy and skull defects must be con-
sidered. Secondly, in the current study, we used CT-based
attenuation correction images as ground truth. There are
several factors that make AC with CT non-ideal, includ-
ing attenuation value differences in CT and PET (140 and
511 keV in CT and PET respectively), the polychromatic
nature of CT beam, and the variability of the various CT
image acquisition and processing steps, such as kVp,
mAs, and reconstruction method. Moreover, the Deep-
DAC model was only trained on 18F-FDG PET images
of the brain acquired 60 min after administration. Thus,
this model is only applicable for 18F-FDG PET images of
the brain. To be used in other PET-based applications with
different radiotracers, the network would need to be
retrained on a new dataset of PET images scanned with
the relevant radiotracers. Finally, the proposed Deep-DAC
network performs 2D attenuation correction. The pro-
posed method uses 2D slices as input and does not con-
sider the trans-axial (z-axis) direction for 3D image infor-
mation. In future work, we aim to extend the proposed
method to a 3D network architecture in order to improve
performance of our framework by incorporating 3D
information.

Conclusion

The present study demonstrates applicability of a deep
convolutional encoder-decoder network for direct AC of brain
PET images. Quantitative analysis of 18F-FDG PET images
by SUVmean and SUVmax showed a mean RE (%) of − 0.1 ±
2.14 (− 4.88 to 6.69) and − 3.87 ± 2.84 (− 9.49 to 10.02), re-
spectively. Deep-DAC images achieved comparable perfor-
mance relative to CT-based attenuation-corrected images, as
assessed using extensive quantitative analysis. Deep learning
methods have significant potential to pave the road towards
emission-based AC for PET images with applications in PET/
MRI and dedicated brain PET imaging.
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