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Abstract
Background: Accurate quantitative PET imaging in neurological studies
requires proper attenuation correction. MRI-guided attenuation correction in
PET/MRI remains challenging owing to the lack of direct relationship between
MRI intensities and linear attenuation coefficients.
Purpose: This study aims at generating accurate patient-specific synthetic CT
volumes, attenuation maps, and attenuation correction factor (ACF) sinograms
with continuous values utilizing a combination of machine learning algorithms,
image processing techniques, and voxel-based radiomics feature extraction
approaches.
Methods: Brain MR images of ten healthy volunteers were acquired using
IR-pointwise encoding time reduction with radial acquisition (IR-PETRA) and
VIBE-Dixon techniques. synthetic CT (SCT) images, attenuation maps, and
attenuation correction factors (ACFs) were generated using the LightGBM,
a fast and accurate machine learning algorithm, from the radiomics-based
and image processing-based feature maps of MR images. Additionally, ultra-
low-dose CT images of the same volunteers were acquired and served as
the standard of reference for evaluation. The SCT images, attenuation maps,
and ACF sinograms were assessed using qualitative and quantitative eval-
uation metrics and compared against their corresponding reference images,
attenuation maps, and ACF sinograms.
Results: The voxel-wise and volume-wise comparison between synthetic and
reference CT images yielded an average mean absolute error of 60.75 ± 8.8
HUs, an average structural similarity index of 0.88 ± 0.02, and an average peak
signal-to-noise ratio of 32.83 ± 2.74 dB. Additionally, we compared MRI-based
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attenuation maps and ACF sinograms with their CT-based counterparts, reveal-
ing average normalized mean absolute errors of 1.48% and 1.33%,respectively.
Conclusion: Quantitative assessments indicated higher correlations and
similarities between LightGBM-synthesized CT and Reference CT images.
Moreover, the cross-validation results showed the possibility of producing accu-
rate SCT images,MRI-based attenuation maps,and ACF sinograms.This might
spur the implementation of MRI-based attenuation correction on PET/MRI and
dedicated brain PET scanners with lower computational time using CPU-based
processors.

KEYWORDS
attenuation correction, machine learning, PET/MRI, radiomics, synthetic CT

1 INTRODUCTION

Reaching the full potential of quantitative PET imag-
ing in neurological studies requires accurate correction
of physical degrading factors including photon atten-
uation. Attenuation correction of PET data requires
patient-specific attenuation map containing the distri-
bution of attenuation coefficients of tissues inside the
body.1 PET/CT scanners commonly use energy map-
ping techniques, such as piecewise linear scaling to
obtain the required attenuation map directly from CT
images.2 Hybrid PET/MRI systems offer several advan-
tages over PET/CT systems.3 Nevertheless, attenuation
correction in PET/MRI is challenging owing to the MR
signal’s dependence on tissues’ proton density and
relaxation times instead of electron density.4 Further-
more, in conventional MR images, cortical bone and air
voxels exhibit similar appearances despite their differ-
ent attenuation properties. Cortical bone tissues have
very low proton density (only 20% water) and a very
short T2 relaxation time (only 390 µs at 3 Tesla),making
it difficult to differentiate them from air voxels.5 Ignor-
ing bone voxels during PET attenuation correction can
cause significant errors of up to 25% in the head region
and 17%–23% in whole-body imaging.6,7

Several approaches have been proposed to gener-
ate PET attenuation maps from MRI.8 The two primary
approaches are atlas-based and segmentation-based
methods. Atlas-based methods rely on normal anatomy
and cannot consider anatomical variations.On the other
hand, segmentation-based approaches use patient-
specific segmented brain MR images,but they are prone
to tissue classification errors, especially in air/bone
regions. Most recent MRAC techniques use artificial
intelligence techniques to identify patterns and relations
between input MR images and output CT images.9–13

They create synthetic CT (SCT) images or attenuation
maps for PET attenuation correction based on input MR
images.14 Additionally, continuous Hounsfield Unit (HU)
values in SCT images and continuous linear attenua-
tion coefficient (LAC) values in attenuation maps are
essential for proper attenuation correction in PET/MRI

and dedicated brain PET only scanners.15 The use of
discrete values,especially in bone voxels,can negatively
impact the performance of attenuation correction meth-
ods. Despite numerous studies, MRAC still remains a
challenge in PET/MRI systems.16–18

Machine learning models rely significantly on feature
engineering to identify and select relevant features. In
contrast, deep learning models employ deep neural net-
works to automatically extract features, thereby dimin-
ishing the need for manual intervention. While machine
learning typically exhibits superior performance with
smaller datasets and can yield robust outcomes when
utilizing handcrafted features, deep learning necessi-
tates substantial amounts of data for effective training
and demonstrates enhancements with larger datasets.
Furthermore, machine learning algorithms generally
afford greater interpretability, thereby facilitating the
comprehension and optimization of processes. Con-
versely, deep learning is often marked by lower inter-
pretability, complicating optimization processes. More-
over, machine learning is particularly well-adapted for
traditional computing systems, utilizing the CPU for
rapid processing.Conversely,deep learning depends on
sophisticated infrastructure,frequently employing GPUs,
and typically requires more extended training periods,
occasionally spanning several days.19,20

Radiomics techniques rely on the extraction of com-
plex features from medical images, enabling models
to identify intricate patterns and voxel relationships
that traditional assessment methods may overlook.21,22

These features provide objective, quantitative data
about various anatomical structures, reducing human
bias and variability in interpretations. Consequently, this
detailed voxel-based information facilitates the training
of robust AI models with improved accuracy. Inte-
grating radiomics-based features, image processing
techniques, advanced machine learning algorithms, and
automated hyperparameter tuning frameworks enables
the development of artificial intelligence models that
convert MR images into synthetic CT images.

In this study, we proposed a novel approach that
integrates, for the first time, advanced machine learning
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algorithms, voxel-based radiomics feature extraction
methods, and image processing techniques to effec-
tively generate accurate SCT images, MRI-based
attenuation maps, and ACF sinograms from MR images
without using a GPU or advanced processors. This
approach is suitable for MRI-based attenuation correc-
tion on PET/MRI and dedicated brain PET scanners.
Additionally, we obtained ultra-low-dose head CT
images to validate our approach and compare them
with synthetic images. The preprocessing and train-
ing stages were performed on simple CPU-based
processors with lower computational time.

2 MATERIALS AND METHODS

2.1 Data acquisition

Recent advances in MRI allow capturing signals from
short-T2 tissues, such as bone voxels using zero echo
time (ZTE) imaging techniques.23 However, without
performing k-space gap-filling in ZTE techniques, the
reconstruction of the acquired data can lead to low
spatial frequency artifacts.24 PETRA sequence fills the
ZTE central gap region using single-point imaging (SPI)
with decreased gradient strength and constant encoding
time.25

Compared to UTE, PETRA exhibits a significant
increase in SNR for T2 values of 100 µs,250 µs,and 750
µs, with improvements of 53%, 19%, and 6%, respec-
tively. Additionally, PETRA demonstrates 70% higher
SNR for cortical bone and 36% higher bone/air CNR
than UTE. PETRA offers improved image resolution
for short T2 tissues, such as bone, lower acous-
tic noise levels, and reduced susceptibility artifacts
compared to UTE.26 The modified PETRA sequence,
IR-PETRA, begins with an inversion pulse, resulting in
T1-weighted contrast. In IR-PETRA, the Cartesian com-
ponent of k-space is sampled immediately following
the first inversion pulse, while the radial component is
projected after the second and subsequent inversion
pulses.27

The proposed CT and MR imaging protocols were
approved by the Ethical Committee of Tehran Uni-
versity of Medical Sciences (Ethic license number
1401.037). Ten healthy volunteers (five male and five
female) participated in this study after providing writ-
ten consent. In addition to IR-PETRA, all volunteers
underwent CAIPIRINHA-accelerated T1 VIBE DIXON
MR data acquisition. This sequence generates in-phase
and out-of -phase images using two different echo
times. Additionally, mathematical computations can be
employed to produce fat and water images. All mag-
netic resonance scans were conducted on a 3T MR
scanner (MAGNETOM Prisma, Siemens, Erlangen, Ger-
many) and a 20-channel head/neck coil. To assess the
performance of the MRI to SCT conversion algorithm,

we acquired ultra-low-dose helical head CT images from
the same volunteers using an ULD-CT protocol28 on
the CT module of the Discovery IQ PET/CT scanner
(GE Healthcare Technologies,WI,USA).The total effec-
tive dose of the ULD-CT protocol was about 0.5% of
the standard head CT scan. All CT and MR imaging
parameters are summarized in Table 1.

2.2 Data processing

We performed correction of bias magnetic field using
the N4ITK algorithm29 with a BSpline grid resolution of
(1,1,1), a convergence threshold of 0.0001, a BSpline
order of 3, and a shrink factor of 4. Furthermore, we
employed a non-local transform domain filtering algo-
rithm, referred to as the 4D block-matching technique30

to denoise ULD-CT images while maintaining their
details and essential characteristics. Due to a lower
photon flux, ULD-CT images have higher noise lev-
els. In the following, we registered the 3D MR and CT
images using the BRAINS module of the Insight Toolkit
in 3D Slicer software version 5.2.1 (http://www.slicer.org)
with an affine transformation, linear interpolation mode,
B-Spline grid size (14,10,12), and the mattes mutual
information (MMI) registration cost metric.

2.3 Generating SCT images from MRI

The 3D voxel-based radiomics feature maps were
extracted from MR images using the PyRadiomics
library.31 These first-order and second-order radiomics
feature maps were transformed into feature vectors the
same size as the target label vectors.32 In addition
to radiomics feature maps, several image processing-
based features were extracted from MR images, includ-
ing a logarithmic map, gamma-adjusted image, Gaus-
sian and median filtered images, and logarithmic expo-
nential map. Once feature extraction was completed,
we applied different feature selection techniques to
select the most relevant and essential features to use
as machine learning model inputs. Feature selection is
an essential step in machine learning model creation,
focusing on identifying the most relevant features from
the dataset. It enhances model performance, reduces
overfitting,and improves model interpretability.Common
techniques include Filter methods, which use statistical
measures to assess feature relevance; Wrapper meth-
ods, which evaluate subsets of features based on their
impact on model performance; and embedded meth-
ods, which select features based on their contribution
throughout model training. We extract radiomics-based
and image-processing-based feature maps from IR-
PETRA and VIBE-DIXON MR images. Afterward, we
applied feature selection methods to identify 15 fea-
ture maps that were the most relevant for training our
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HOSEINIPOURASL ET AL. 3775

TABLE 1 CT and MR imaging protocols and acquisition parameters.

CT imaging MR imaging
Parameter ULD-CT Parameter IR-PETRA VIBE-DIXON

Protocol
Matrix size
Voxel size (mm)
kVp
mA
Rotation time (s)
Slice numbers

Helical head
512 × 512
0.5 × 0.5 × 2.5
80
10
0.5
∼70:80

Orientation
Dimension
TE(s) (ms)
TR(s) (ms)
TI(s) (ms)
Flip angle (◦)
Bandwidth (Hz/Px)
Voxel size (mm)
FOV (mm2)
Acquisition time (min)
No. of Radial views
Slice per slab
Averages

Transversal
3D
0.07
3.32–2250
1300–900
6
401
0.9 × 0.9 × 0.9
300 × 300
5:57
60000
320
1

Transversal
3D
2.46–3.69
6.44
-
12
650–320
0.7 × 0.7 × 2.0
250 × 250
3:33
-
112
1

Abbreviation: IR-PETRA, IR-pointwise encoding time reduction with radial acquisition

model and generating SCT images.Most of the selected
features are first-order radiomics-based features.33,34

To achieve more robust results, we employed all three
feature selection methods.The feature maps that exhib-
ited the highest frequency across these three meth-
ods were subsequently selected for training the ML
model.

Ensemble and hybrid machine learning algorithms
combine multiple learners to improve model perfor-
mance and reduce bias and variance. Boosting is
one of the most popular ensemble techniques, where
weak learners are trained sequentially to create a
robust model. Gradient boosting machine (GBM) is
a tree-based boosting algorithm that utilizes the gra-
dient descent optimization algorithm to minimize the
loss function and iteratively enhance model perfor-
mance. Extreme gradient boosting (XGBoost) is an
advanced version of GBM that can handle overfitting,
missing values, and best split finding with excellent
efficiency.35

Light gradient boosting machine (LightGBM) is a
robust open-source gradient-boosting algorithm devel-
oped by Microsoft in 2017. It is an improved version of
XGBoost, designed to handle computational challenges
associated with vast high-dimensional datasets.36 Light-
GBM has several advanced features, such as exclusive
feature bundling (EFB) that helps reducing the dimen-
sionality of the data, gradient-based one-side sampling
(GOSS) that focuses on the large gradient (error) train-
ing data points, Leaf-wise tree growth that reduces
memory usage during the training, parallel process-
ing and distributed computing support that enable fast
handling of large datasets, and advanced regulariza-
tion techniques like Dropouts meet Multiple Additive
Regression Trees (DART) that overcome model over-
specialization.37

We utilized the LGBMRegressor module from the
LightGBM library, employing DART boosting and GOSS
data sampling to enhance model performance and gen-

erate accurate SCT images. As illustrated in Figure 1,
we organized the selected features from MR images
into a data frame, which served as the input for the
machine learning model during the training process.
This approach produces synthetic CT volumes as the
output of the LGBMRegressor model, with continuous
HU values.

In addition,we utilized the Optuna library,an automatic
hyperparameter optimization and tuning framework, to
optimize LightGBM’s. We employed a 10-fold leave-
one-out cross-validation (LOOCV) technique to validate
the model’s efficacy on previously unseen data. This
involved tuning LightGBM hyperparameters using one
validation fold, training LightGBM using nine training
folds,and predicting SCT from a single test fold.This pro-
cedure is repeated ten times to generate synthetic CT
for all ten volunteers. Our proposed approach to gener-
ate SCT images and their corresponding leave-one-out
cross-validation technique is summarized in Figure 1.
This figure reveals that the study involves several steps:
(1) Acquiring VIBE-DIXON and IR-PETRA MR images
and ULD-CT images from ten healthy subjects. (2) Reg-
istering the MR and CT images. (3) Extracting radiomics
and image processing feature maps from MR images.
(4) Applying feature selection techniques to these maps.
(5) Generating input data frames in Python environment.
(6) Conducting 10-fold leave-one-out cross-validation
while optimizing LightGBM with Optuna. (7) Training
LightGBM on data from nine subjects to predict an SCT
image for a test subject. (8) Comparing CT and SCT
images pairwise.

The algorithm employed in this study used 64-bit
Python version 3.9.10 as its internal software, operat-
ing on an Intel Core i7 CPU 6700HQ @ 2.60 GHz × 8
with 16 GB of RAM. We calculated the computa-
tional time involving feature extraction, model training,
and model prediction processes to facilitate compar-
ative analysis of our model with previously reported
models.
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F IGURE 1 Schematic overview of the proposed ML-based SCT generation approach.

2.4 Generating MR-based and
CT-based attenuation maps and ACF
sinograms

The trilinear conversion of 80 kVp CT HU values to
511 KeV PET LACs (cm−1) was adopted from Abella
et al.38 as given in Equation 1. We used this scaling
method to create attenuation maps and obtain PET
LACs from CT values. In the following, we applied the
Radon transform to the attenuation maps to generate
corresponding ACF sinograms.

LAC = 9.30 × 10−5 × HU + 0.093 : −1000 < HU < 0
LAC = 3.28 × 10−5 × HU + 0.093 : 0 < HU < 1000
LAC = 4.10 × 10−6 × HU + 0.122 : 1000 < HU < 30000

(1)

2.5 Evaluation metrics

We conducted a thorough analysis of SCT images,
MRI-based attenuation maps,and ACF sinograms using
various evaluation metrics. Our evaluation metrics con-
sisted of voxel-wise assessments including the mean
absolute error (MAE) and normalized mean absolute
error (NMAE), as well as volume-wise assessments
including relative volume difference (RVD). To assess
image quality, we utilized metrics, such as the structural
similarity index measure (SSIM), peak signal-to-noise

ratio (PSNR), and universal quality index (UQI). Addi-
tionally,we employed the Pearson correlation coefficient
(PCC) to determine the linear correlation between
predicted and reference images.

NMAE (P, G) = MAE
DR

= 1
DR

(
1

xyz

x−1∑
i =0

y−1∑
j =0

z−1∑
k =0

|G (i, j, k)

− P (i, j, k)|)

RVD (P, G)% =
∑∑∑

P (i, j, k) −
∑∑∑

G (i, j, k)∑∑∑
G (i, j, k)

SSIM (P, G) =
(2𝜇G𝜇P + C1) (2𝜎GP + C2)(

𝜇2
G + 𝜇2

P + C1

)(
𝜎2

G + 𝜎2
P + C2

)
PSNR (P, G) = 10log10

(
G2

max

MSE (G, P)

)

UQI (P, G) =
4𝜎GPGP(

𝜎2
G + 𝜎2

P

) [
(G)2 + (P)2

]
PCC (P, G) =

∑
(Gi − G) (Pi − P)√∑

(Gi − G)2 ∑ (Pi − P)2

where G and P represent corresponding pixel values in
the reference and predicted images,and x,y,and z repre-
sent the image dimensions. DR is the dynamic range of
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the image pixel values, whereas Gmax is the maximum
pixel value of the reference CT image. C1 = (k1DR)2,
C2 = (k2DR)2, k1 = 0.01, and k2 = 0.03 by default.

Additionally,we compared segmented CT images with
segmented SCT images. Our analysis involved the cal-
culation of various metrics, including the Dice similarity
coefficient (DSC), accuracy, area under receiver oper-
ating characteristic curve (AUROC), precision, recall
(sensitivity), and specificity (selectivity). Specific thresh-
olds were applied to CT and SCT images to segment
air, bone, and soft tissue. Values greater than 300 HU
were set to identify bone, while values less than −300
HU were mapped to air. Any values falling outside
these ranges were labeled as soft tissue. This classifi-
cation metric was calculated separately for each tissue
class, including bone, air, and soft tissue. Moreover, we
utilized histogram-wise and slice-wise techniques to
further evaluate the generated synthetic CT images,
attenuation maps, and ACF sinograms.

3 RESULTS

The LightGBM model was trained and evaluated using
10-fold leave-one-out cross-validation. The presented
metrics were computed across the entire dataset.
Figure 2 shows the SCT image slices produced by
LightGBM and their corresponding IR-PETRA MR and
reference CT slices for different volunteer datasets;
upon visual inspection by an experienced radiologist, the
SCT images generated by LightGBM exhibit lower noise
levels, higher signal-to-noise ratios (SNR), and a similar
qualitative appearance to the reference CT images.

Figure 3 presents an example of input MR images
alongside reference CT images of a randomly selected
volunteer dataset. This includes SCT images gener-
ated by the LightGBM algorithm and the corresponding
binary and multi-class segmented outputs of both CT
and SCT datasets. In Figure 4, we present an example
of attenuation maps derived from CT and MR images
in coronal, sagittal, and axial planes, accompanied by
their difference maps and joint histograms of a ran-
domly selected dataset of volunteers. Additionally, this
figure illustrates examples of ACF sinograms based
on CT and MRI, along with their corresponding dif-
ference map and joint histograms. Figures 5 and 6
illustrate representative examples of these histogram-
wise and slice-wise evaluations of a random volunteer
dataset.

Table 2 summarizes the statistical results, including
the mean, standard deviation, minimum, and maximum
values for various metrics, such as MAE, NMAE, SSIM,
PSNR, UQI, RVD, and PCC. These metrics were cal-
culated between the SCT and reference CT images
across the entire dataset. Table 3 outlines the sta-
tistical results including the mean, standard deviation,
minimum, and maximum values of MAE, NMAE, SSIM,
RVD, and PCC metrics for MRI-based attenuation maps

TABLE 2 Summary of the Mean Absolute Error, Normalized
Mean Absolute Error, Structural Similarity Index Measure, Peak
Signal-to-Noise Ratio, Universal Quality Index, Relative Volume
Difference, and Pearson Correlation Coefficient between reference
SCT and their corresponding reference CT images using the 10-fold
LOOCV technique performed on datasets from 10 volunteers.

Metric
MAE
(HU)

NMAE
% SSIM

PSNR
(dB) UQI

RVD
% PCC

avg 60.75 0.78 0.88 32.83 0.85 14.73 0.95

std 8.80 0.23 0.02 2.74 0.02 10.27 0.009

min 46.10 0.47 0.85 28.78 0.82 2.07 0.93

max 74.16 1.10 0.91 36.40 0.89 29.40 0.96

Abbreviations: LOOCV, leave-one-out cross-validation; MAE, mean absolute
error; NMAE, normalized mean absolute error; PCC, Pearson correlation coeffi-
cient; PSNR, peak signal-to-noise ratio; RVD, relative volume difference; SSIM,
structural similarity index measure; UQI, universal quality index.

compared to reference CT-based attenuation maps. It
also provides the mean, standard deviation, minimum,
and maximum values for the MAE, NMAE, RD, and
PCC metrics obtained from MRI-based ACF sinograms
compared to reference CT-based ACF sinograms.

Extracting features from a 3D MR image and creating
an input data frame takes approximately 30 min.Training
the LightGBM model with a 9-fold input requires approx-
imately 60 min, and generating the synthetic CT volume
from the test fold takes less than 1 min.

Table 4 displays the evaluation results for the three-
class segmented CT and segmented SCT images
derived from the dataset of 10 volunteers. The evalua-
tions utilized various metrics, including the Dice similarity
coefficient (DSC), accuracy, AUROC, precision, recall
(sensitivity), and specificity (selectivity).

4 DISCUSSION

PET data must undergo a series of corrections to
accurately reflect the actual activity distribution. The
most crucial correction of PET data is attenuation
correction. This correction significantly impacts visual
quality and quantitative accuracy, particularly in neuro-
logical studies. In hybrid PET/MRI and dedicated brain
PET scanners, generating synthetic CT images and
attenuation maps from brain MR images is a promis-
ing approach for solving the attenuation correction
challenge of PET data.39

PET attenuation maps can be generated from MRI
using different techniques, such as atlas-based, ML-
based, and DL-based approaches.9 However, atlas-
based techniques are time-consuming and do not
accurately represent patient’s anatomical variations. On
the other hand, DL-based methods are patient-specific
and offer better results, but they require advanced sys-
tems with robust processors and GPUs.40,41 The training
phase of DL techniques can take several days, and
they need a considerable amount of input data to
achieve good results. Deep learning models typically
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3778 HOSEINIPOURASL ET AL.

F IGURE 2 Visual representation of input IR-PETRA MR images (first row), reference CT images (second row), generated synthetic CT
images (third row), and normalized difference images between reference and synthetic images (fourth row) across various volunteer datasets.

TABLE 3 Quantitative assessment of MRI-based attenuation maps and MRI-based attenuation correction factor (ACF) sinograms
compared to reference CT-based maps and sinograms using the 10-fold LOOCV technique performed on datasets from 10 volunteers.

MRI-based attenuation maps MRI-based ACF sinograms
Metric MAE (cm−1) NMAE % SSIM PSNR (dB) RVD % PCC MAE (ACF) NMAE % PCC RVD %

Avg 0.0019 1.48 0.94 28.06 2.09 0.992 0.13 1.33 0.998 9.21

Std 0.0003 0.27 0.013 1.24 1.39 0.002 0.03 0.35 0.001 9.45

Min 0.0013 1.08 0.91 26.35 0.22 0.987 0.09 1.03 0.997 1.72

max 0.0025 2.02 0.96 29.97 5.19 0.995 0.22 2.16 0.999 26.4

Abbreviations: LOOCV, leave-one-out cross-validation; MAE, mean absolute error; NMAE, normalized mean absolute error; PSNR, peak signal-to-noise ratio; SSIM,
structural similarity index measure.

require multi-dimensional inputs such as 2D slices or 3D
volumes.42

Our machine learning approach uses single-
dimensional inputs, where each image voxel is

considered a sample. Each patient’s dataset in this
study contains about 20 million voxels, resulting in
200 million samples as the model’s total input. We
have implemented several fine-tuned regularization
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HOSEINIPOURASL ET AL. 3779

F IGURE 3 Representative illustrations showing input MR image (first column), the synthetic CT image with segmentation results (second
column), along with the reference CT image and segmented images (third column). The bias maps between the synthetic and reference images
are also displayed (fourth column).

techniques to prevent model over-fitting when working
with such vast input data. On the other hand, machine
learning approaches are more interpretable than deep
learning approaches,and as such, improving and tuning
them is much easier.

LightGBM, a machine-learning model known for its
high speed and accuracy, is a key component of
our work. Its advanced features, like exclusive feature
bundling (EFB), Gradient-based One-Side Sampling
(GOSS), Leaf-wise tree growth, parallel processing,
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3780 HOSEINIPOURASL ET AL.

F IGURE 4 The first three rows represent CT-based and MRI-based attenuation maps in coronal, sagittal, and axial views, with their
difference map and joint histogram images, respectively. The fourth row shows CT-based and MRI-based ACF sinograms along with their
difference map and joint-histogram images. The joint histograms demonstrate significant correlation between CT-based and MRI-based
attenuation maps. ACF, attenuation correction factor.

distributed computing support, and advanced regular-
ization techniques, such as DART, ensure its efficiency
and consistency.36 These features enable LightGBM to
operate very fast on either CPU(s) or GPU(s) and pro-
duce more accurate results with low bias and variance.
LightGBM,when properly tuned,can be used as a robust
MRI-to-CT conversion model, providing a high level of
confidence in the accuracy of our research.

Our proposed model training phase takes approxi-
mately 60 min on CPU-based processors. Additionally,
it generates a synthetic CT with continuous HUs in less
than 1 min. We performed this study using 10 brain
datasets, resulting in an average MAE of 60.75 ± 8.8
HUs, representing an improvement over the results
reported in the literature.16,43

Dovletov et al. utilized T1-weighted MRI datasets
from 16 patients to investigate various U-Net and GAN-
based deep learning models for synthesizing pseudo-
CT images. Their results revealed a MAE of 101 ± 35
HUs, a PSNR of 24.3 ± 1.9 dB, and a structural sim-
ilarity index metric (SSIM) of 79.6% ± 6.8%.44 Kläser
et al. employed T1 and T2 weighted MRI datasets from

20 patients to implement HighRes3DNet with imitation
learning for generating synthetic CT images. Their find-
ings indicated a MAE of 79 ± 3 HUs.45 Arabi et al. used
3D T1W MPRAGE MR images of 50 patients in con-
junction with the Deep Learning Adversarial Semantic
Structure (DL-AdvSS) method to produce synthetic CT
images.10 Their findings reported a PSNR of 28 ± 1 dB
and SSIM of 87% ± 4%. Boukellouz et al. utilized
T1 and T2 weighted MRI datasets from 10 patients
and patch-based multi-modal feature extraction in con-
junction with Stacked-generalization machine-learning
approaches for synthesizing pseudo-CT images.46 Their
findings demonstrated a MAE of 106 ± 18 HUs in the
synthesized CT images. This study demonstrated that
integrating radiomics, image processing techniques,and
machine learning algorithms can produce results that
surpass those of many current deep learning meth-
ods. Although we recognize that our approach may
demonstrate suboptimal performance on specific met-
rics compared to other studies, it consistently shows
comparable or superior results relative to established
techniques, even when utilizing a smaller dataset.
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HOSEINIPOURASL ET AL. 3781

F IGURE 5 Histograms of reference and synthetic CT images, attenuation maps, and ACF sinograms. The third row displays overlapped
histograms, indicating a significant similarity between the reference and synthetic ones. Moreover, the histograms of difference or subtracted
images, maps, and sinograms in the fourth row demonstrate minimal errors between the reference and synthetic ones. ACF, attenuation
correction factor.
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3782 HOSEINIPOURASL ET AL.

F IGURE 6 The slice-wise MAE and NMAE evaluation show
minor errors in the different slices between reference and synthetic
CT images, attenuation maps, and ACF sinograms. However, the
dental-filling regions have higher MAE values than other head
regions. (Note that the slice numbers are arranged from bottom to
top within the head region). ACF, attenuation correction factor; MAE,
mean absolute error; NMAE, normalized mean absolute error.

The synthetic CT images generated using LightGBM
resulted in patient-specific and voxel-specific images
with low noise levels,high PSNR,high histogram similar-
ity, and strong correlation to reference CT images. After
performing trilinear energy mapping of the synthetic
CT images, it was found that MRI-based attenuation
maps have an average structural similarity index of
94% ± 1.3% and an average relative volume differ-
ence of 2.09% ± 1.39% from CT-based attenuation
maps. In addition, after performing the Radon trans-
form on attenuation maps, it was discovered that
MRI-based ACF sinograms have an average NMAE of
1.33% ± 0.35% compared to CT-based ACF sinograms.
Moreover, MRI-based ACF sinograms demonstrated a
high correlation and similarity to their CT-based ACF
sinograms.

IR-PETRA sequence helps to achieve bone seg-
mentation accuracy of 97% and an air segmentation
accuracy of 98.5% in synthetic CT images. Figure 5

TABLE 4 Comparison of the three-class segmented reference
and synthetic CT images results using the 10-fold LOOCV technique
performed on datasets from 10 volunteers.

Bone
Metric Dice Accuracy AUROC Precision Recall Specificity

avg 0.75 0.97 0.85 0.79 0.72 0.98

std 0.02 0.005 0.03 0.05 0.07 0.006

min 0.71 0.96 0.82 0.65 0.65 0.97

max 0.79 0.98 0.91 0.87 0.84 0.99

Air
Metric Dice Accuracy AUROC Precision Recall Specificity

avg 0.989 0.985 0.983 0.992 0.987 0.980

std 0.002 0.002 0.002 0.002 0.002 0.003

min 0.987 0.982 0.980 0.989 0.984 0.975

max 0.993 0.989 0.988 0.996 0.991 0.987

Soft tissue
Metric Dice Accuracy AUROC Precision Recall Specificity

avg 0.91 0.96 0.95 0.90 0.93 0.97

std 0.007 0.007 0.01 0.01 0.02 0.007

min 0.90 0.95 0.92 0.88 0.87 0.95

max 0.92 0.97 0.96 0.93 0.95 0.98

Abbreviation: AUROC, area under receiver operating characteristic curve;
LOOCV, leave-one-out cross-validation

shows that synthetic and reference images have high
histogram similarity and overlapping, especially ACF
sinograms. Figure 6 depicts a NMAE of less than 4%
in each slice for synthetic CT images, attenuation maps,
and ACF sinograms. In summary, the findings suggest
that LightGBM has the potential to become a promis-
ing approach for generating high-quality and accu-
rate synthetic CT images and MRI-based attenuation
maps.

IR-PETRA is an MRI sequence that uses ZTE tech-
nology. It is ideal for neurological studies owing to its
minimal acoustic noise level, making it a near-silent MR
sequence. In addition, by implementing short echo time,
radial k-space sampling, and wider receiver bandwidth
in IR-PETRA, susceptibility effects can be reduced,
especially in air-bone and air-tissue interfaces.23 These
effects can disrupt image processing and machine
learning tasks by inducing distortions and signal loss in
MR images.

The most significant differences between CT and
synthetic CT images were observed around the ear
regions and patients’ surfaces. These differences could
be caused by variations in ear positioning during MRI
and CT scans or MR-CT registration errors. Addition-
ally,a significant difference was noted in cases of dental
orthodontic brackets, fillings, and implants. Furthermore,
we only used MRI of healthy volunteers to generate
synthetic CT images in this study since clinical and
pathological data sets were not available.
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HOSEINIPOURASL ET AL. 3783

5 CONCLUSION

This study introduced a novel machine learning and
radiomics-based approach for generating synthetic CT
images and MRI-based attenuation maps using IR-
PETRA and VIBE-DIXON MRI to perform attenuation
correction of brain PET data. The proposed algorithm
was evaluated using a dataset of ten healthy subjects.
The validation results comparing the synthetic and refer-
ence CT images,attenuation maps,and ACF sinograms,
show high similarity. This study demonstrated the possi-
bility of generating accurate synthetic CT volumes with
lower computational time using CPU-based processors
and conventional systems.
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