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relationship between MR image intensity and attenuation coefficients. The aim of the present
study is to develop a list-mode based algorithm for accurate and robust attenuation correction of
PET data using time-of-flight (TOF) emission information. We analyze and address the challenges
of list-mode emission-based maximum-likelihood joint estimation of activity and attenuation
(LM-MLAA) in state-of-the-art PET imaging. The proposed method exploits a rapid on-the-fly
system matrix calculation algorithm based on elliptic integrals while updating the attenuation
map from accumulating list-mode coincidences to achieve accelerated image reconstruction. The
scattering compensation is incorporated inside it using an iterative approach in such that the current
estimation of attenuation map used on a course grid sampling scattering points to make an estimate
of scattering. The performance of the proposed LM-MLAA approach was evaluated on Monte
Carlo simulations of a phantom at different time resolutions. The contrast and noise for hot and
cold regions on reconstructed images at different time resolutions were analysed. The estimated
attenuation map exhibits resilience against noise, effectively eliminates high-frequency cross-talk
even in the absence of prior information on attenuation coefficients, and enables discrimination
among different anatomical regions in the reconstructed image. The error in the mean estimated
attenuation coefficients after 50 iterations was ∼ 2% in water and ∼ −14% in Teflon regions for
TOF resolutions corresponding to those of most current commercial PET systems (∼ 500 ps). The
proposed LM-MLAA framework can be used for joint reconstruction of activity and attenuation maps
from list-mode emission data as standalone or a complementary approach to existing in multimodality
imaging such as PET/MRI, where direct measurement attenuation maps is not possible.

Keywords: Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Medical-
image reconstruction methods and algorithms, computer-aided diagnosis; Multi-modality systems
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1 Introduction

Correction for photon attenuation within the patient’s body is an essential step in the reconstruction
of quantitative PET images [1]. Accurate attenuation correction in PET requires the utilization of a
patient-specific attenuation map. In the context of hybrid PET/CT systems, CT images have become
the standard for deriving attenuation maps due to the strong correlation between electron density and
attenuation coefficients. However, the situation differs in PET/MR imaging systems [2]. Unlike CT,
there is no direct relationship between the MRI signal and attenuation coefficients since MRI signals
are primarily influenced by proton density and tissue relaxation times. Consequently, addressing
this challenge necessitates the exploration of various approaches. To tackle this challenge, several
approaches have been proposed, including MR image segmentation-based techniques that partition
the body into tissue classes with different attenuation characteristics, atlas-based and machine
learning techniques where co-registered CT-MR image pairs combined with a mapping/learning
technique to derive pseudo-CT images and emission- and transmission-based techniques that exploit
TOF emission or transmission data [2, 3]. The conceptual basis of the emission-based approach
lies in the fact that emission PET data contains important information about the attenuation map.
Unlike CT-based attenuation map estimation, emission-based approaches for attenuation map
generation do not require energy mapping [5]. Instead of relying on CT images, the co-registration
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of attenuation and emission images can be employed on emission based methods when CT data
is not available. This allows for accurate attenuation map estimation even in scenarios where a
dedicated CT scan is not feasible or practical. The attenuation information can be extracted based on
consistency conditions or simultaneous estimation of activity and attenuation maps in a Maximum
Likelihood (ML) framework [2, 4]. The Maximum Likelihood reconstruction of Activity and
Attenuation (MLAA) proposed by Nuyts et al. uses a constrained ML approach for simultaneous
reconstruction of activity and attenuation maps from emission data [5]. The cross-talk (where some
features of the activity map propagate into the attenuation map and vice versa) confines the use
and application of the MLAA framework in PET. It has been shown that TOF PET reconstruction
is less sensitive than non-TOF reconstruction to inconsistent normalization and inaccurate data
correction, and hence is capable of suppressing or at least reducing cross-talk in MLAA [6, 7]. The
elegant mathematical analysis revealed that the attenuation coefficients in support of the emission
sinogram can be determined from emission data up to a constant scaling factor in TOF PET [8].
Incorporation of prior knowledge on the attenuation map can confine the local convergence of the
likelihood function and also reduce the cross-talk error and noise in the resulting images. The
prior information can be determined in the form of connected regions from MR images [9], local
smoothness of the attenuation map [5], histogram-based priors [4, 10] and scatter coincidences
based information [11, 12].

Conventional PET reconstruction approaches bin the acquired data into sinogram bins. In this
scenario, each detected coincidence is stored at one of predetermined detector locations (or bins),
and each bin only represents the total number of counts for the LORs that have been grouped together
based upon common characteristics. Also, rebinning methods can be used for further reduction of the
dimensionality of the data and speed-up 3D reconstruction. The incorporation of TOF information
in 3D PET adds an additional dimension to the acquired dataset. Application of data mashing may
degrade image quality (spatial resolution), especially away from the center of the FOV [13] due
to the integration of nearby LORs into the same sinogram bin. Moreover, random and scattered
coincidences need to be critically considered and integrated into the forward projection operator
of iterative reconstruction because they may yield negative sinogram bins when subtracted from
the measured data. List-mode reconstruction is valuable in PET applications where there is a need
for high spatial and/or temporal resolution, such as high-resolution small-animal or organ-specific
imaging, as well as for dynamic studies. In addition, list-mode reconstruction is more useful than
the histogramming mode in terms of storage requirements, especially for high-resolution PET [13].
Furthermore, list-mode reconstructions can naturally incorporate motion correction of the individual
events during the reconstruction process [14]. To the best of our knowledge, no practical list mode
based MLAA was implemented so far. Yet, Rezaei et al. extended the sinogram implementation of
the MLAA algorithm to handle list mode data [15]. In the work of Rezaei et al., the authors compared
visually list mode and sinogram reconstructions of a NEMA phantom, though no quantitative analysis
was performed. In addition, corrections for scatter or random coincidences were not considered.
Moreover, user interaction was suggested to constrain the attenuation map estimation in regions with
no tracer uptake. In the present work, we propose a list-mode TOF MLAA algorithm (LM-MLAA)
with internally scatter compensation on an iterative approach for simultaneous reconstruction of
activity and attenuation maps from emission data. This method is able to cope with the considerable
size of list mode data generated from fully 3D TOF PET acquisitions.
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2 Materials and methods

2.1 Principle of MLAA

In TOF PET, the mean number of detected coincidences for LOR 𝑖 with associated detection photon
time difference 𝑡, 𝑔𝑖𝑡 , is expressed as:

𝑔𝑖𝑡 = 𝑛𝑖𝑒
−∑

𝑘 𝑙𝑖𝑘𝜇𝑘

𝐽∑︁
𝑗=1

𝑐𝑖 𝑗𝑡𝜆 𝑗 + 𝑛𝑖𝑆𝑖𝑡 + 𝑟 𝑖𝑡 (2.1)

where 𝜆 and 𝜇 are the activity and attenuation vectors, respectively, 𝑛𝑖 is a normalization factor,
the term 𝑒−

∑
𝑘 𝑙𝑖𝑘𝜇𝑘 models photon attenuation, 𝑐𝑖 𝑗𝑡 represent the coefficients of the system matrix

(scanner geometry and physical imaging processes) for LOR 𝑖, voxel 𝑗 and TOF bin 𝑡, and 𝑆𝑖𝑡

and 𝑟 𝑖𝑡 denote the estimated scattered and random coincidences for the LOR 𝑖 at TOF bin 𝑡. In
addition, 𝐽 represents the number of voxels in the activity map, and 𝑙𝑖𝑘 denotes the attenuation
intersection length for LOR 𝑖 and voxel 𝑘 . The activity and attenuation maps can be determined
from the measured PET emission data 𝑔𝑖𝑡 using the log-likelihood maximization:

𝐿 (𝑔 | (𝜆, 𝜇)) =
∑︁
𝑖𝑡

𝑔𝑖𝑡 ln 𝑔𝑖𝑡 − 𝑔𝑖𝑡

�̂�, �̂� = arg max
𝜆,𝜇

{𝐿 (𝑔 |𝜆, 𝜇) + 𝛼𝑃(𝜇)}
(2.2)

where 𝐿 and 𝑃 denote the objective function corresponding to the logarithm of the likelihood and
prior terms for the attenuation map. This prior usually involves knowledge about the attenuation map
and can be weighted relative to the original likelihood function using 𝛼. The function would not be
concave if 𝜆 and 𝜇 are treated as unknown distributions. For solving this problem, MLAA approach
based on the alternate updates of 𝜆 and 𝜇 was proposed that converges toward a local optimum [5].

2.2 List-mode MLAA

In the list-mode format, the measured data are stored as a list of detector location pairs with
additional potential information, such as detected photon energies, TOF, and depth-of-interaction.
The attenuation along each LOR 𝑖 can be described as:

𝑎𝑚𝑖 = exp

(
−

(
𝐽∑︁

𝑏=1
𝑙𝑖𝑏𝜇

𝑚
𝑏

))
(2.3)

where 𝑚 is the iteration number. The list-mode algorithm for activity reconstruction can be
formulated as follows [13, 14, 16]:

𝜆𝑚+1
𝑗 =

𝜆𝑚
𝑗∑𝐼

𝑖=1 𝑛𝑖𝑎
𝑚
𝑖
𝑐𝑖 𝑗𝑡

(
𝑁∑︁
𝑘=1

𝑛𝑖𝑘𝑎
𝑚
𝑖𝑘
𝑐𝑖𝑘 𝑗𝑡

1
(𝑛𝑖𝑘𝑎𝑚𝑖𝑘

∑𝐽
𝑏=1 𝑐𝑖𝑘𝑏𝑡𝜆

𝑚
𝑏
) + 𝑠𝑖𝑘 𝑡 + 𝑟 𝑖𝑘

)
(2.4)

where 𝑖𝑘 is the corresponding LOR of the 𝑘 𝑡ℎ list-mode event, 𝑁 is the total number of measured
events, 𝐼 denotes the total number of possible LORs. The log-likelihood for transmission tomography
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keeping 𝜆 constant can be calculated from:

𝐿TR(𝜇) =
𝐼∑︁

𝑖=1
(𝑔𝑖 ln𝜓𝑖 − 𝜓𝑖) + 𝛼𝑃(𝜇)

𝜓𝑖 (𝜇) = 𝑛𝑖 exp

(
−

(
𝐽∑︁

𝑏=1
𝑙𝑖𝑏𝜇𝑏

))
𝐽∑︁
𝑗=1

𝑐𝑖 𝑗𝜆 𝑗 = 𝑛𝑖𝑎𝑖

𝐽∑︁
𝑗=1

𝑐𝑖 𝑗𝜆 𝑗

(2.5)

Since attempts for developing the EM algorithm for transmission tomography have not led to an
updateable expression for likelihood increment, a gradient ascent algorithm [17, 18] which directly
maximizes the likelihood function can be used. 𝐿TR is a complex function for direct maximization
using common optimization techniques; hence it was suggested to replace it with a surrogate function
that is easier to maximize (optimization transfer). The attenuation map can be updated after each
iteration 𝑚 (see appendix A for a detailed derivation):

𝜇𝑚+1 = 𝜇𝑚 + Δ𝜇𝑚 (2.6)

such that [19],

0 =
𝜕𝐿TR
𝜕𝜇 𝑗

(𝜇𝑚+1) = 𝜕𝐿TR
𝜕𝜇 𝑗

(𝜇𝑚 + Δ𝜇𝑚) = 𝜕𝐿TR
𝜕𝜇 𝑗

(𝜇𝑚) +
∑︁
ℎ

𝜕2𝐿TR
𝜕𝜇 𝑗𝜕𝜇ℎ

Δ𝜇𝑚ℎ (2.7)

where ℎ denotes the voxel number (ℎ = 1, . . . , 𝐽). This is satisfied by the following expression
for Δ𝜇𝑚+1

𝑗
:

Δ𝜇𝑚+1
𝑗 = −

𝜕𝐿TR
𝜕𝜇 𝑗

(𝜇𝑚)∑
ℎ

𝜕2𝐿TR
𝜕𝜇 𝑗𝜕𝜇ℎ

(𝜇𝑚)
(2.8)

Subsequently, the attenuation map can be rewritten as follows (detailed in appendix A)

𝜇𝑚+1
𝑗 = 𝜇𝑚𝑗 +

∑𝐼
𝑖=1 𝑙𝑖 𝑗𝜓

𝑚
𝑖
−

(∑𝑁
𝑘=1 𝑙𝑖𝑘 𝑗

𝜓𝑚
𝑖𝑘

𝜓𝑚
𝑖𝑘
+𝛽𝑖𝑘

)
− 𝜕

𝜕𝜇 𝑗
(𝛼𝑃(𝜇))∑𝐼

𝑖=1 𝑙𝑖 𝑗
(𝜓𝑚

𝑖
)2

𝜓𝑚
𝑖
+𝛽𝑖 (

∑𝐽
𝜁=1 𝑙𝑖𝜁 ) +

∑
ℎ

𝜕2

𝜕𝜇 𝑗𝜕𝜇ℎ
(𝛼𝑃(𝜇))

(2.9)

Where 𝛽𝑖 = 𝑠𝑖 +𝑟 𝑖 . Because TOF information is incorporated in the activity reconstruction (eq. (2.4)),
its convergence rate is higher than the attenuation map update (eq. (2.8)). To solve this issue, the cycle
of attenuation updates should be done faster, such that multiple attenuation updates are performed for
every activity update. Interestingly, while non-TOF reconstruction usually requires less processing
time in sinogram format mode than TOF-based, list-mode based reconstruction does not have the
same behavior and there is no significant difference between processing of non-TOF and TOF
reconstructions in list-mode (except for the calculation of the system matrix). Fortunately, the term
of (∑𝐽

𝜁=1 𝑙𝑖𝜁 ) is independent of current estimations of activity and attenuation, and is only related to
the number of coincidences and system matrix elements. This property allows it to be calculated
once and used as a constant factor during subsequent calculations.
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2.3 Correction for random and scatter components

In order to preserve the Poisson nature of the likelihood, it is crucial to incorporate the contribution
of scattering and random events during the reconstruction process itself, as opposed to prior to it.
This is supported by equations (2.4) and (2.9), which clearly indicate that accounting for scattering
and random events within the reconstruction framework is necessary. The random coincidences are
estimated using a delayed-coincidence window method. The coincidences detected within a delayed
window are counted as random coincidences for each LOR because the detection probability of a
true coincidence within this window would be zero. Furthermore, the Single Scatter Simulation
(SSS) algorithm was used for the estimation of the scatter component with an update for TOF-PET
data [20]. The algorithm approximates the scattering component in a given LOR by single Compton
scattered events only based on this assumption that the total amount of scattering can be expressed as
the superposition of the contributions of many scatter points to the LOR calculated by an analytical
formula. The single scatter approximation expresses the contribution of a scattering sample point 𝑆
to a LOR spanned of a photon pair emitted such that one photon is detected unscattered while the
other one is incident on scattering point 𝑆 before reaching the detector. The expected single-scatter
rate to be detected by the detector pair (𝐴, 𝐵) is given by equation (2.10):

SSS(𝐴, 𝐵) =
∫

Scattering Volume

(
𝜎𝐴𝜎𝐵

4𝜋𝑅2
𝐴
𝑅2
𝐵

) (
𝜇

𝜎𝑐

𝑑𝜎𝑐

𝑑Ω

)
(𝑅𝐴 + 𝑅𝐵)𝑑𝑉𝑠

𝑅𝐴 = 𝜖𝐴(𝐸)𝜖𝐵 (𝐸 ′)
(
𝑒−

∫ 𝐴

𝑆
𝜇 (𝐸 )𝑑𝑙

) (
𝑒−

∫ 𝐵

𝑆
𝜇 (𝐸′ )𝑑𝑙

) ©«
𝐴∫

𝑆

𝐹TOF𝜆(𝑙)𝑑𝑙
ª®¬

𝑅𝐵 = 𝜖𝐴(𝐸)𝜖𝐵 (𝐸 ′)
(
𝑒−

∫ 𝐵

𝑆
𝜇 (𝐸 )𝑑𝑙

) (
𝑒−

∫ 𝐴

𝑆
𝜇 (𝐸′ )𝑑𝑙

) ©«
𝐵∫

𝑆

𝐹TOF𝜆(𝑙)𝑑𝑥
ª®¬

(2.10)

where 𝜎𝑐 is the total Compton interaction cross section, Ω is the solid scattering angle, 𝑑𝜎𝑐

𝑑Ω
is the

Klein-Nishina differential cross section (calculated at the angle ∠𝐴𝑆𝐵), 𝐸 = 511 keV and 𝐸 ′ is
scattered energy. Furthermore, let 𝜎𝐴 and 𝜎𝐵 denote the geometrical cross section of detector 𝐴 and
𝐵 for rays incident along 𝐴𝑆 (detector 𝐴 to sample scattering point 𝑆) and 𝑆𝐵 (detector 𝐵 to sample
scattering point 𝑆), 𝑅𝐴 and 𝑅𝐵 are the distances between the sample point and detectors 𝐴 and 𝐵,
respectively. A simple model of the detector efficiencies, contingent upon the photon energy, energy
resolution and discriminator bounds of detectors is provided by 𝜖𝐴 and 𝜖𝐵. 𝐹TOF incorporates TOF
information using modeling with a quasi-Gaussian function based on the TOF value and effective
TOF resolution of the system [20, 21].However, this technique requires the actual attenuation map
and corrected emission images, yet reconstruction without accurate scatter estimation does not
provide quantitative images. To solve this problem, an iterative approach was utilized, such that the
estimation of the scatter component is updated for current estimation of attenuation and activity
images. This means that at each iteration of the reconstruction process, a new scattering component
is computed, taking into account the most up-to-date activity and attenuation estimations. This
updated scattering component is then utilized in the subsequent iteration of the reconstruction,
contributing to the refinement of both the activity and attenuation maps. Due to the computational
cost, our implementation of SSS-TOF has been slightly modified through the use of a coarse grid
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sampling of scattering points where scatter estimation is interpolated from this grid to physical LOR
space to operate directly in list-mode iterative reconstruction. The suggested algorithm employs
the attenuation map for the purpose of excluding regions that fall outside the patient’s designated
area. For each point of scattering coarse grid, the scattering expected ratio for each detector pair is
estimated and then summed over all scatter points (eq. (2.11)). Finally the scattering component is
modeled by scaling as an integral transformation of the single scatter distribution.

2.4 Algorithm implementation and image quality assessment

The proposed algorithm was implemented with and without a smoothness prior. A Median root prior
(MRP) [22] was used as penalty using a Maximum a Posterior (MAP) framework that can be weighted
by the Bayesian parameter 𝛼. The prior objective function of MRP can be defined as follows:

𝑃(𝜇) = −
𝐽∑︁
𝑗=1

(𝜇 𝑗 − 𝑚 𝑗)2

2𝑚 𝑗

(2.11)

where 𝑚 𝑗 denotes the median of voxels in the neighbourhood centred at 𝑗 . In this study, 𝛼 is chosen
based on visual inspection through trial and error to produce a uniform attenuation map. Because the
attenuation map derived by MLAA is biased with an unknown constant [8], the peak shifting method
was used to solve the scaling problem [23]. In this method, to mitigate potential bias resulting from
an incorrect scaling factor, the estimated attenuation maps were rescaled during each iteration. The
rescaling aimed to align the most frequent attenuation coefficient in the histogram with the dominant
actual attenuation coefficient in the object, which was set to 0.096 cm−1 for water. This adjustment
ensured that the estimated attenuation maps accurately represent the expected attenuation properties
of the object, minimizing any scaling-related biases.

List-mode image reconstruction has a high computational cost owing to a large amount of
data, and as such, there is a demand to reduce the computational time for each event. With use
of an on-the-fly approach for calculation of system matrix, the elements of the system matrix are
calculated during the reconstruction process rather than pre-calculating and storing them on a hard
disk (as a lookup table), which is often used in histogram-based reconstructions. In the current
study, an approach based on the volume of the intersection computation method was used [24].
In this approach, cubic image voxels and rectangular Tubes of Response (ToRs) in 3D PET are
approximated using spheres and cylinders, respectively, to account for the finite size of the crystals
and provide a realistic model of the physical system. The advantage of this modelling is that the
relative orientation of voxels and ToRs is neglected and the volume of intersection between a voxel
and the ToR is calculated based on the distance between the voxel center and ToR axis. A normal
probability density function was incorporated in the system matrix calculation step to account for
TOF information. This method allows rapid on-the-fly computation of the system matrix and hence
reduces its computational complexity in LM-MLAA. The intersection volume of the modelled
spheres with TOR cylinder calculated using an analytical expression based on the elliptic integrals
provides a significant reduction of the time-consuming system matrix extraction process while
keeping the same accuracy.

Since emission-based methods are not able to estimate attenuation coefficients for LORs that do
not intersect non-zero activity distributions, a background mask was obtained from a few iterations
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of activity map reconstruction without attenuation correction to estimate the contour of the scanned
object. Based on this mask, attenuation coefficients estimation was confined to regions of the
attenuation map with activity support. The initial attenuation map was made by filling the background
mask uniformly with the water attenuation coefficient. The activity images reconstructed using the
original attenuation map at different TOF resolutions were used as reference activity maps (MLEM).
For evaluation of the contrast and noise properties of the reconstructed activity images, the contrast
recovery coefficient (CRC) and relative standard deviation (RSD) were used. The CRChot for each
hot source was defined as:

CRChot =

𝐻𝑠

𝐵
− 1

𝑅HB − 1
(2.12)

where 𝐻𝑠 is the average activity concentration of each hot source, 𝐵 denotes the background activity
concentration and 𝑅HB is the hot to background ratio. Also, CRCcold for each cold region was
defined as:

CRCcold = 1 − 𝐶𝑠

𝐵
(2.13)

where 𝐶𝑠 represents the average activity concentration of each cold region. To analyze the CRC for
both hot and cold sources, the initial step involved generating a mask image that assigned distinct
tags to each source (hot and cold) and included a designated region for the background. This mask
facilitated the extraction of corresponding voxels from the reconstructed activity and attenuation
maps for each specific region. Subsequently, the mean and standard deviation of the intensities of
extracted voxels were computed for each region. Notably, the background region was defined as
a cylindrical region situated at the center of the phantom, devoid of any hot or cold sources. The
diameter of this background region was twice the size of the largest source, measuring 50 mm.

2.5 Monte Carlo simulation studies

The performance of the proposed method was evaluated using simulated TOF PET data obtained
using GATE Monte Carlo package [25]. The PET system geometry corresponded to the GE
Discovery-690TOF PET/CT scanner using 13,824 LYSO crystals arranged on 24 rings with crystal
dimensions of 4.2 × 6.3 × 25 mm3. The transaxial FOV and coincidence time windows are 700 mm
and 4.9 ns, respectively [26]. TOF resolutions of 100, 300, and 544 ps were modelled to evaluate
the effect of image quality in the absence of noise and dead-time. A Monte Carlo simulation was
conducted to generate list-mode data of a ACR1 phantom. This cylindrical phantom features a
fillable design with an internal radius of 10.8 cm and a height of 10 cm. It includes seven thin-walled
cylinders consisting of four fillable tubes with diameters of 8, 12, 16, and 25 mm, as well as other
cold solid rods with a diameter of 25 mm. The fillable tubes were filled with air, water, and Teflon
having linear attenuation coefficients of 1.116 × 10−4, 0.0961 and 0.1813 cm−1, respectively.The
background compartment (5,700 ml) was filled with 4.5 kBq/ml 18F solution, whereas the fillable
tubes were filled with nine kBq/ml activity concentration resulting in a source-to-background ratio of
2. In addition, another experiment was performed with a source-to-background ratio of 4 to evaluate
the impact on reconstructed images.The output of simulation was post-processed using an in-house
software to generate list-mode files. During the simulation, the following parameters were utilized:
an energy resolution of 12.5%, an energy window ranging from 425 to 650 keV, and a data acquisition
duration of 600 seconds. The reconstruction process involved 20 iterations, reconstructing images
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with a size of 256× 256× 47 (voxel size: 2.73× 2.73× 3.27 mm3), without applying any smoothing
filters. In the proposed approach implementation, five attenuation updates were performed for
every activity update. Additionally, it should be mentioned that, during the first three iterations, the
scattering calculation step was turned off to obtain initial estimations of the activity and attenuation
maps. For the scattering calculation, mesh dimensions of 0.7 cm transversely and 0.7 cm axially
were employed, resulting in approximately 180k sampling points across the entire FOV with a low
energy threshold of 425 keV as a discriminator. In order to improve calculation speed and reduce
the number of sampling points, a rejection step was implemented. During this step, points were
rejected if the attenuation coefficient associated with their location was below a certain threshold
(0.02 cm−1). It is worth noting that the simulation’s accuracy exhibits minimal sensitivity to the grid
size, whereas the computational time varies inversely with the product of the three mesh dimensions.
The scaling factor is calculated by performing tail-fitting in the scatter-only region, which exists
outside the object. To identify this region, the current estimation of the activity and attenuation map
is forward projected and masked accordingly. Within this masked region, the scatter estimate is
then time-integrated, interpolated, and subjected to a least-squares affine fitting procedure.

3 Results

The actual attenuation and emission maps along with MLEM reconstructions of PET emission
images with a known attenuation map and reconstructed attenuation and activity maps using the
proposed method at different TOF resolutions are depicted in figure 1. The reconstructed activity
map obtained with MLEM method using a known attenuation map is considered as the gold standard
data. This serves as the reference against which other methods are compared. The MLEM method
with a known attenuation map corresponds to the scenario commonly encountered in PET/CT
imaging, where the attenuation map is derived from the CT image and then used for reconstructing
the activity map. However, visually discerning differences between MLEM images, particularly
between reconstructions with TOF resolutions of 300 and 544 ps, can be challenging. In such cases,
focusing the observation on the better recovery of the hot source regions can be beneficial. With
a TOF resolution of 300 ps, the largest hot source exhibits improved uniformity, and the presence
of the smallest hot source is clearly discernible. Table 1 provide a statistical compression between
reconstructed images and actual ones at different TOF resolutions.

Table 1. Comparison of the reconstructed activity and attenuation maps for the ACR phantom using the
proposed method and actual images with metrics of MSE, SNR, PSNR, and CC. Actual attenuation image
and MLEM reconstructed activity maps using actual attenuation map at different time resolutions were used
as reference images.

Scanner time
resolution

Activity Attenuation
MSE PSNR SNR CC MSE PSNR SNR CC

100 ps 0.0028 25.57 27.33 0.9996 1.05 × 10−7 69.78 16.95 0.9899
300 ps 0.0082 20.89 22.65 0.9976 1.65 × 10−7 67.83 14.99 0.9842
544 ps 0.0931 10.31 12.07 0.9838 3.35 × 10−7 64.75 11.91 0.9752
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Table 2. Relative error (%) in the mean estimated attenuation coefficients after 20 and 50 iterations at different
coincidence time resolutions.

20 iterations 50 iterations
Scanner Time

Resolution
ROI 1
(Air)

ROI 2
(Water)

ROI 3
(Teflon)

ROI 1
(Air)

ROI 2
(Water)

ROI 3
(Teflon)

100 ps 383.74 4.50 −14.23 309.99 5.72 −8.28
300 ps 443.87 6.80 −15.37 333.93 5.45 −9.80
544 ps 534.48 12.31 −14.17 334.08 1.85 −13.74

A sense of the attenuation reconstruction quality using the proposed technique with and without
MRP is shown in the profile plots of figure 2. It can be observed that LM-MLAA and LM-MLAA-
MRP overestimate the attenuation coefficients for the air region. This causes the activity profiles in
this area to be more intense than actual values (figure 3). While LM-MLAA-MRP improves image
uniformity especially, in the background, owing to the presence of a smoothing term, the estimated
attenuation coefficients are lower than the default LM-MLAA.

Figure 4 shows the mean and standard deviation of the estimated attenuation coefficients at each
iteration of the LM-MLAA method for cold regions of the ACR phantom. The actual attenuation
coefficients for each class are shown by horizontal red solid lines. Table 2 shows the error on the mean
estimated attenuation coefficients after 20 and 50 iterations at different TOF resolutions. It should
be noted that the actual attenuation coefficient of the air region is very low (1.116e−4 cm−1), and
hence the relative errors for this region appear high. The presented algorithm estimates reasonably
well attenuation for water class with a reasonable standard deviation, while it underestimates the
mean attenuation coefficients for air and Teflon classes. Moreover, it should be emphasized that with
improving the TOF resolution, the underestimation is reduced especially for air region.

Figure 5 and 6 depict CRC vs. RSD trade-off performance curves (generated with increasing
iterations) for hot sources with different hot to background ratios and cold sources at different TOF
resolutions, respectively. The LM-MLAA method managed well the effect of the change of the
different source to background ratios showing considerable similarity in the behaviour of CRC curves
for LM-MLAA and standard MLEM at different TOF resolutions. In addition, one can observe that, for
LM-MLAA reconstruction, the effect of improved TOF resolution is greater on the larger hot sources.

4 Discussion

In the present work, a list-mode emission-based maximum likelihood reconstruction of attenuation and
activity approach has been presented for TOF-PET. List-mode processing is an invaluable approach
that guarantees the incorporation of all available information during the reconstruction process.
By utilizing list-mode data, the reconstruction algorithm can leverage the detailed information
from each individual event, resulting in a more comprehensive and accurate reconstruction. This
enables the preservation of fine temporal details and the extraction of maximum information from
the acquired data (dynamics of the acquisition). However, it is crucial to acknowledge the trade-offs
that accompany list-mode processing, particularly in relation to computational costs. The proposed
method uses a fast and precise on-the-fly system matrix computation and an optimized SSS algorithm
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Figure 1. First row: actual attenuation and activity distributions. Second row: MLEM reconstructed
images with known attenuation map. Third row: activity reconstructed images using LM-MLAA, Forth row:
attenuation reconstructed images using LM-MLAA. The columns represent various TOF resolutions, namely:
(a) 100 ps, (b) 300 ps, and (c) 544 ps.

Figure 2. Comparison of attenuation map profiles for the ACR phantom with and without MRP at TOF
resolutions of 100 ps and 544 ps, in comparison to the ground truth profiles.
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Figure 3. Profiles of the reconstructed activity maps for list-mode MLAA compared to the MLEM
reconstructed images with known attenuation maps at time resolutions of 100 ps, 300 ps and 544 ps.

Figure 4. Estimated attenuation coefficients by the proposed method at different reconstruction iteration
numbers in (a) Air, (b) Water, and (c) Teflon Regions. The dot points represent the mean of the estimated
attenuation coefficients, while the error bars depict the ± one standard deviation.

for compensation of scattering coincidences to implement joint list mode reconstruction. The
evaluation shows that the system TOF resolution and initial attenuation map have significant effects
on the image quality of images reconstructed using LM-MLAA (figures 3 and 4), especially for
large objects. Prior to the introduction of silicon photomultiplier (SiPM)-based TOF PET, the TOF
resolution of most state-of-the-art clinical TOF-PET scanners were in the range of 500–600 ps.
Recent progress in the field of PET instrumentation, including fast detectors and readout electronics,
is expected to pave the way for the development of next-generation TOF-PET scanners [27, 28] in
order to remove the barriers for clinical application of LM-MLAA.

One of the drawbacks of LM-MLAA is that the estimated attenuation coefficients from the
emission data for regions outside the activity support are inaccurate, even in the absence of noise.
In addition, it produces less accurate attenuation coefficients for regions with very limited tracer
uptake, e.g. near the boundaries of objects whose LORs have vanishing activity as one approaches
the boundary. Hence, a background mask or penalty could be used to set to zero the attenuation
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Figure 5. Contrast (CRC) versus noise (RSD) for hot sources in the ACR phantom on ROI regions with
diameters of (a) 8, (b) 12, (c) 16 and (d) 25 mm at different iteration numbers. Noise was computed in a ROI
located in the centre of image with diameter of 50 mm. Top row shows results for a source-to-background
contrast ratio of 2 while the last row shows the same results for source-to-background ratio of 4.

Figure 6. Contrast (CRC) versus noise (RSD) for cold sources in the ACR phantom on (a) air, (b) water and
(c) Teflon regions at different iteration numbers which shown using markers.

coefficients in regions of no or with very limited tracer uptake. In studies where the attenuation map
includes areas outside the contour of activity distribution (such as scanner bed, coils, etc.), the use of
complementary information is necessary to complete the attenuation map [3].

The standard emission-based method for joint reconstruction of activity and attenuation maps
often suffers from noise due to the limited counting statistics of PET emission data. The utilization
of TOF data effectively eliminates high-frequency cross-talk in joint estimation problem [29], with
the extent of cross-talk reduction being dependent on the TOF resolution value (figure 1). However,
to address low-frequency cross-talk, it is beneficial to incorporate prior knowledge about the activity
and/or the attenuation map into the reconstruction process, thereby confining the maximization of
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the log-likelihood function. In addition to suppressing low-frequency cross-talk, the incorporation
of prior knowledge such as anatomical priors and/or histogram-based information [2, 30] in the
reconstruction process also accelerates the identification of optima and is necessary to bind the
scaled solutions. Incorporating a smoothness prior (LM-MLAA-MRP) to the attenuation map
derivation process can reduce the RSD, thus resulting in a higher uniformity in the attenuation map.
However, this might blur the edges, reduce the attenuation map contrast and result in less accurate
attenuation coefficients.

Figure 4 illustrates the attempt of the proposed approach to approximate the actual values of
attenuation coefficients. However, depending on the TOF resolution, a bias may exist, making it
difficult to achieve the exact values even with a high number of iterations. In such situations, the
selection of the starting point, particularly the initial attenuation map, becomes crucial. In this
specific study, we initiated the reconstruction process from scratch without an appropriate initial
attenuation map and did not incorporate any prior information (except the smoothing term) to
constrain the solution throughout the iterations. It seems that LM-MLAA initiated and confined by
MRI could be a robust and reliable approach for attenuation map derivation in hybrid PET/MRI [3].

The weighting factor of the smoothing prior (𝛼) is currently determined through visual inspection,
which may lead to a count/tracer-dependent output. Selecting very large values for it can result in a
smoothed attenuation image and delay the estimation of the attention map and hence necessitates
the use of more iterations for reconstruction. Therefore, it is preferred to choose a lower value
for it, as it allows for obtaining more detailed attenuation maps. However, using a low value may
introduce artifacts in the activity images due to the lack of uniformity across different regions of
the attenuation maps. To address this limitation and prevent excessive suppression of details in
the reconstructed image, a dynamic parameter can be employed. By starting with a low value for
this factor and gradually increasing it during the iteration process, a more creative approach can
be adopted to achieve an optimal balance between preserving image details and achieving desired
smoothing effects.

Unlike the histogramming mode, LM-MLAA computation time strongly depends on the number
of measured coincidences. The use of the developed system matrix calculation method allows
rapid on-the-fly computation of the volume of intersection between LORs and voxels. Future work
should focus on ascertaining the level of accuracy needed for the sensitivity matrix calculation
and performing clinical studies to thoroughly assess the performance of LM-MLAA method in the
different clinical setting.

5 Conclusions

We developed and assessed a novel list-mode based algorithm for joint estimation of activity and
attenuation maps from emission data in TOF-PET imaging. The technique was evaluated extensively
using Monte Carlo simulated studies at different TOF resolutions. The approach looks promising
for deriving patient-specific attenuation maps and is reasonably robust to errors that can lead to an
improvement in image quality. The proposed method may open new perspectives for PET imaging
applications that do not allow the use of transmission scanning to derive the attenuation map, such
as PET, PET/MRI, PET/CT studies with a reduced CT field-of-view or applications where patient
motion prevents direct utilization of CT data.
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A Joint reconstruction of activity and attenuation maps in list mode

In TOF PET, the mean number of detected coincidences for LOR 𝑖 with associated detection photon
time difference 𝑡, 𝑔𝑖𝑡 , is expressed as:

𝑔𝑖𝑡 = 𝑛𝑖𝑒
−∑

𝑘 𝑙𝑖𝑘𝜇𝑘

𝐽∑︁
𝑗=1

𝑐𝑖 𝑗𝑡𝜆 𝑗 + 𝑆𝑖𝑡 + 𝑟 𝑖𝑡 (A.1)

where 𝜆 and 𝜇 are the activity and attenuation vectors, respectively, 𝑛𝑖 is a normalization factor,
the term 𝑒−

∑
𝑘 𝑙𝑖𝑘𝜇𝑘 models photon attenuation, 𝑐𝑖 𝑗𝑡 represent the coefficients of the system matrix

(scanner geometry and physical imaging processes) for LOR 𝑖, voxel 𝑗 and TOF bin 𝑡, and 𝑆𝑖𝑡

and 𝑟 𝑖𝑡 denote the estimated scattered and random coincidences for the LOR 𝑖 at TOF bin 𝑡. In
addition, 𝐽 represents the number of voxels in the activity map, and 𝑙𝑖𝑘 denotes the attenuation
intersection length for LOR 𝑖 and voxel 𝑘 . The activity and attenuation maps can be determined
from the measured PET emission data 𝑔𝑖𝑡 using the log-likelihood maximization:

𝐿 (𝑔 | (𝜆, 𝜇)) =
∑︁
𝑖𝑡

𝑔𝑖𝑡 ln 𝑔𝑖𝑡 − 𝑔𝑖𝑡

�̂�, �̂� = arg max
𝜆,𝜇

{𝐿 (𝑔 |𝜆, 𝜇) + 𝛼𝑃(𝜇)}
(A.2)

where 𝐿 and 𝑃 denote the objective function corresponding to the logarithm of the likelihood and
prior terms for the attenuation map. Please note that when calculating the activity map in PET,
it is important to take into account the time information. However, it is worth emphasizing that
the attenuation map does not depend on the time index. This is because the attenuation coefficient
specifically reflects the extent of photon absorption or scattering as they propagate through the body
tissue, and this physical property remains constant regardless of the time frame being considered.
In other words, the attenuation length remains unaffected by the time index, meaning that photons
originating from different locations along a LOR will experience the same attenuation coefficient.
The attenuation along each LOR 𝑖 can be described as:

𝑎𝑚𝑖 = exp

(
−

(
𝐽∑︁

𝑏=1
𝑙𝑖𝑏𝜇

𝑚
𝑏

))
(A.3)

where 𝑚 is the iteration number.

A.1 Activity update

The list-mode algorithm for activity reconstruction can be formulated as follows:

𝜆𝑚+1
𝑗 =

𝜆𝑚
𝑗∑𝐼

𝑖=1 𝑛𝑖𝑎
𝑚
𝑖
𝑐𝑖 𝑗𝑡

(
𝑁∑︁
𝑘=1

𝑛𝑖𝑘𝑎
𝑚
𝑖𝑘
𝑐𝑖𝑘 𝑗𝑡

1
(𝑛𝑖𝑘𝑎𝑚𝑖𝑘

∑𝐽
𝑏=1 𝑐𝑖𝑘𝑏𝑡𝜆

𝑚
𝑏
) + 𝑠𝑖𝑘 𝑡 + 𝑟 𝑖𝑘

)
(A.4)
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where 𝑖𝑘 is the corresponding LOR of the 𝑘 th list-mode event, 𝑁 is the total number of measured
events, 𝐼 denotes the total number of possible LORs.

A.2 Attenuation update

A.2.1 Maximum likelihood gradient ascent optimization

Maximizing the likelihood directly (at fixed activity) by setting its partial derivatives to 𝜇 𝑗 to zero is
not feasible. The resulting set of equations depend nonlinearly on the unknowns 𝜇 and the set of
equations are coupled through 𝜇. Since attempts for developing the EM algorithm for transmission
tomography have not led to an updateable expression for likelihood increment, a gradient ascent
algorithm [17, 18] which directly maximizes the likelihood function can be used. The attenuation
map can be updated after each iteration 𝑚:

𝜇𝑚+1 = 𝜇𝑚 + Δ𝜇𝑚 (A.5)

The proposed solution by Nuyts et al. [17] involves approximating the likelihood through a Taylor
series expansion cantered around the current guess (𝜆𝑘 , 𝜇𝑘). This approximation is based on the
quadratic terms and truncates higher-order terms. Furthermore, to simplify the expression, the
quadratic terms in 𝜇 are decoupled. This simplification leads to the development of the Maximum
Likelihood for Transmission (MLTR) algorithm as the resulting update [17, 19].

The Taylor Expansion of a real valued differentiable function 𝑓 : 𝜔 → R around 𝑥 and truncated
at the second order term, is given by

𝑓 (𝑥 + 𝛿𝑥) = 𝑓 (𝑥) + (𝛿𝑥)𝑇∇ 𝑓 (𝑥) + 1
2
(𝛿𝑥)𝑇∇2 𝑓 (𝑥) (𝛿𝑥) (A.6)

where ∇𝑘 is the kth directional derivative in the direction of 𝛿𝑥 and 𝑥 is somewhere on the line
segment connecting 𝑥 with 𝑥 + 𝛿𝑥 : 𝑥 = 𝑥 + 𝜏𝛿𝑥, 𝜏 ∈ [0, 1].

Based on this expansion for the likelihood around the current guess 𝜇𝑚:

𝐿 (𝜇, �̂�𝑚; 𝑔) ≈ 𝐿 ( �̂�𝑚, �̂�𝑚; 𝑔) +
∑︁
𝑗

𝜕𝐿

𝜕𝜇 𝑗

|𝜇𝑚Δ𝜇 𝑗 +
1
2

∑︁
𝑗ℎ

𝜕2𝐿

𝜕𝜇 𝑗𝜕𝜇ℎ
|𝜇𝑚Δ𝜇 𝑗Δ𝜇ℎ (A.7)

Where Δ𝜇 𝑗 = 𝜇 𝑗 − �̂�𝑘
𝑗
. Since

0 ≤ (Δ𝜇 𝑗 − Δ𝜇 𝑗′)2 ⇒ 2Δ𝜇 𝑗Δ𝜇 𝑗′ ≤ Δ𝜇2
𝑗 + Δ𝜇2

𝑗′ (A.8)

Since the second derivatives are all negative (Assuming this condition also holds if the background
is not too large)

1
2

∑︁
𝑗ℎ

𝜕2𝐿

𝜕𝜇 𝑗𝜕𝜇ℎ
|𝜇𝑚Δ𝜇 𝑗Δ𝜇 𝑗′ ≥

1
4

∑︁
𝑗ℎ

𝜕2𝐿

𝜕𝜇 𝑗𝜕𝜇ℎ
|𝜇𝑚 (Δ𝜇2

𝑗 + Δ𝜇2
ℎ) =

1
2

∑︁
𝑗ℎ

𝜕2𝐿

𝜕𝜇 𝑗𝜕𝜇ℎ
|𝜇𝑚Δ𝜇2

𝑗 (A.9)

Filling this in into equation (A.7), a surrogate function is constructed which is equal to in the current
solution and smaller than elsewhere.

𝐿 (𝜇, �̂�𝑚; 𝑔) ≳ 𝐿 ( �̂�𝑚, �̂�𝑚; 𝑔) +
∑︁
𝑗

𝜕𝐿

𝜕𝜇 𝑗

.Δ𝜇 𝑗 +
1
2

∑︁
𝑗ℎ

𝜕2𝐿

𝜕𝜇 𝑗𝜕𝜇ℎ
|𝜇𝑘Δ𝜇2

𝑗 (A.10)
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As a result, the quadratic terms are uncoupled in Δ𝜇. By maximizing the surrogate function (setting
the derivatives to 𝜇 𝑗 : 𝑗 = 1, . . . , 𝐽 ; 𝑗 = 1 of the right hand side of (A.10) to zero), gives:

Δ𝜇𝑚+1
𝑗 = −

. 𝜕𝐿
𝜕𝜇 𝑗

|𝜇𝑚∑
ℎ .

𝜕2𝐿
𝜕𝜇 𝑗𝜕𝜇ℎ

|𝜇𝑚

(A.11)

This update maximizes surrogate function which guarantees an increase of (A.7).

A.2.2 Calculations of derivatives of likelihood

Considering the Poisson likelihood in equation (A.2), for simplicity in writing, let’s define the
following variables:

𝑔𝑖𝑡 = 𝜓𝑖𝑡 + 𝛽𝑖𝑡

𝜓𝑖𝑡 = 𝑛𝑖𝑎𝑖𝑝𝑖𝑡

𝑝𝑖𝑡 =

𝐽∑︁
𝑗=1

𝑐𝑖 𝑗𝑡𝜆 𝑗

(A.12)

where 𝛽𝑖𝑡 is the expectation value of the background and 𝜓𝑖𝑡 is the expectation value of the trues
with 𝑛𝑖 the sensitivity of LOR 𝑖 and 𝑝𝑖𝑡 the projected activity without taking the attenuation nor the
sensitivity into account. The first and second derivatives of the likelihood can be defined as:

𝜕𝐿

𝜕𝜆 𝑗

=
∑︁
𝑖𝑡

𝑛𝑖𝑎𝑖𝑐𝑖 𝑗𝑡

𝑔𝑖𝑡
(𝑔𝑖𝑡 − 𝑔𝑖𝑡 )

𝜕𝐿

𝜕𝜇 𝑗

= −
∑︁
𝑖𝑡

𝑙𝑖 𝑗
𝜓𝑖𝑡

𝑔𝑖𝑡
(𝑔𝑖𝑡 − 𝑔𝑖𝑡 )

𝜕2𝐿

𝜕𝜆 𝑗𝜕𝜆 𝑗′
= −

∑︁
𝑖𝑡

𝑔𝑖𝑡
(𝑛𝑖𝑎𝑖𝑐𝑖 𝑗𝑡 ) (𝑛𝑖𝑎𝑖𝑐𝑖 𝑗′𝑡 )

𝑔𝑖𝑡
2

𝜕2𝐿

𝜕𝜇 𝑗𝜕𝜇ℎ
= −

∑︁
𝑖𝑡

(𝑙𝑖 𝑗 𝑙𝑖ℎ)𝑔𝑖𝑡
[
1 − 𝑔𝑖𝑡

𝑔𝑖𝑡

𝛽𝑖𝑡

𝑔𝑖𝑡

]
𝜕2𝐿

𝜕𝜆 𝑗𝜕𝜇ℎ
=

∑︁
𝑖𝑡

(𝑙𝑖ℎ𝑛𝑖𝑎𝑖𝑐𝑖 𝑗𝑡 )
[
1 − 𝑔𝑖𝑡

𝑔𝑖𝑡

𝛽𝑖𝑡

𝑔𝑖𝑡

]
(A.13)

Furthermore, when 𝛽 = 0, we can express the simplified versions.

𝜕𝐿

𝜕𝜇 𝑗

= −
∑︁
𝑖

𝑙𝑖 𝑗 (𝑔𝑖𝑡 − 𝑔𝑖𝑡 )

𝜕2𝐿

𝜕𝜇 𝑗𝜕𝜇ℎ
= −

∑︁
𝑖

(𝑙𝑖 𝑗 𝑙𝑖ℎ)𝑔𝑖𝑡

𝜕2𝐿

𝜕𝜆 𝑗𝜕𝜇ℎ
=

∑︁
𝑖

(𝑙𝑖ℎ𝑛𝑖𝑎𝑖𝑐𝑖 𝑗𝑡 )

(A.14)
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A.2.3 Transmission model with prior

The log-likelihood for transmission tomography keeping 𝜆 constant can be calculated from:

𝐿𝑇𝑅 (𝜇) =
𝐼∑︁

𝑖=1
(𝑔𝑖 ln𝜓𝑖 − 𝜓𝑖) + 𝛼𝑃(𝜇)

𝜓𝑖 (𝜇) = 𝑛𝑖 exp

(
−

(
𝐽∑︁

𝑏=1
𝑙𝑖𝑏𝜇𝑏

))
𝐽∑︁
𝑗=1

𝑐𝑖 𝑗𝜆 𝑗 = 𝑛𝑖𝑎𝑖

𝐽∑︁
𝑗=1

𝑐𝑖 𝑗𝜆 𝑗

(A.15)

As the summation exists between two terms, we can separate the calculation of the deviations
and then perform the final summation. Based on the equation (A.11) for Δ𝜇𝑚+1

𝑗
and derivatives of

likelihood (equation (A.13)), the attenuation map can be rewritten as follows:

𝜇𝑚+1
𝑗 = 𝜇𝑚𝑗 +

∑𝐼
𝑖=1 𝑙𝑖 𝑗

𝜓𝑚
𝑖

𝜓𝑚
𝑖
+𝛽𝑖 (𝜓

𝑚
𝑖
+ 𝛽𝑖 − 𝑔𝑖) − 𝜕

𝜕𝜇 𝑗
(𝛼𝑃(𝜇))∑𝐼

𝑖=1 𝑙𝑖 𝑗
(𝜓𝑚

𝑖
)2

𝜓𝑚
𝑖
+𝛽𝑖 (

∑𝐽
𝜁=1 𝑙𝑖𝜁 ) +

∑
ℎ

𝜕2

𝜕𝜇 𝑗𝜕𝜇ℎ
(𝛼𝑃(𝜇))

(A.16)

Where 𝛽𝑖 = 𝑠𝑖 + 𝑟 𝑖 . Finally, the attenuation update equation in list mode can be expressed as follows:

𝜇𝑚+1
𝑗 = 𝜇𝑚𝑗 +

∑𝐼
𝑖=1 𝑙𝑖 𝑗𝜓

𝑚
𝑖
− (∑𝑁

𝑘=1 𝑙𝑖𝑘 𝑗
𝜓𝑚
𝑖𝑘

𝜓𝑚
𝑖𝑘
+𝛽𝑖𝑘

) − 𝜕
𝜕𝜇 𝑗

(𝛼𝑃(𝜇))∑𝐼
𝑖=1 𝑙𝑖 𝑗

(𝜓𝑚
𝑖
)2

𝜓𝑚
𝑖
+𝛽𝑖 (

∑𝐽
𝜁=1 𝑙𝑖𝜁 ) +

∑
ℎ

𝜕2

𝜕𝜇 𝑗𝜕𝜇ℎ
(𝛼𝑃(𝜇))

(A.17)
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