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Abstract
Purpose The current study aimed to evaluate the association of endorectal ultrasound (EUS) radiomics features at differ-
ent denoising filters based on machine learning algorithms and to predict radiotherapy response in locally advanced rectal 
cancer (LARC) patients.
Methods The EUS images of forty-three LARC patients, as a predictive biomarker for predicting the treatment response 
of neoadjuvant chemoradiotherapy (NCRT), were investigated. For despeckling, the EUS images were preprocessed by 
traditional filters (bilateral, wiener, lee, frost, median, and wavelet filters). The rectal tumors were delineated by two readers 
separately, and radiomics features were extracted. The least absolute shrinkage and selection operator were used for feature 
selection. Classifiers including logistic regression (LR), K-nearest neighbor (KNN), support vector machine (SVM), random 
forest, naive Bayes, and decision tree were trained using stratified fivefold cross-validation for model development. The 
area under the curve (AUC) of the receiver operating characteristic curve followed by accuracy, precision, sensitivity, and 
specificity were obtained for model performance assessment.
Results The wavelet filter had the best results with means of AUC: 0.83, accuracy: 77.41%, precision: 82.15%, and sensitivity: 
79.41%. LR and SVM by having AUC: 0.71 and 0.76; accuracy: 70.0% and 71.5%; precision: 75.0% and 73.0%; sensitivity: 
69.8% and 80.2%; and specificity: 70.0% and 60.9% had the highest model’s performance, respectively.
Conclusion This study demonstrated that the EUS-based radiomics model could serve as pretreatment biomarkers in predict-
ing pathologic features of rectal cancer. The wavelet filter and machine learning methods (LR and SVM) had good results 
on the EUS images of rectal cancer.
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Introduction

Rectal cancer/treatment

Rectal cancer accounts for one-third of the whole colorectal 
malignancies worldwide [1, 2]. Commonly, the method for 
treatment of locally advanced rectal cancer is neoadjuvant 
chemoradiotherapy (NCRT) followed by radical surgery, 
which causes a complete pathologic response (pCR) in 15% 
of patients [3]. This approach increased the chance of down-
staging remarkably and reduced the risk of recurrence [4].

Techniques used for staging before surgery/EUS

Several methods are used for diagnosing/staging rectal can-
cer. Generally, techniques used for staging before surgery are 
included computed tomography (CT), ultrasound, magnetic 
resonance imaging (MRI), and positron emission tomog-
raphy (PET) [5]. However, endorectal ultrasound (EUS) is 
an accurate modality for staging rectal cancer, and it is also 
a noninvasive, economical, radiation-free, and real-time 
method [6, 7].

Speckle/filters

One of the main factors affecting ultrasound images is 
speckle noise, which causes difficulty in visual observation 
[8, 9]. In other words, the speckle noise can degrade the 
fine details and edge definitions, as well as limit the contrast 

resolution in the ultrasound images [10]. The common clas-
sical filters used to despeckle images are detailed preserving 
anisotropic diffusion (DPAD), median, mean, wavelet, lee, 
frost, bilateral, and wiener filters [11, 12].

Radiomics/steps

Radiomics is a noninvasive helping tool to analyze biomedi-
cal imaging through quantitative features of the tumor or 
healthy tissues, which is not directly estimable visually [8]. 
The radiomics process involves image acquisition and pre-
processing, the volume of interest segmentation, quantitative 
feature extraction, and feature reduction [13]. The selected 
features extracted from radiomics are used for several appli-
cations, such as therapy response prediction, accurate tumor 
characterization, and survival assessment [14–16].

US noise removal + radiomics

Using noise removal filters is one of the preprocessing methods 
for ultrasound image. The improved imaging can be entered 
into radiomics for further analysis. It has been reported that 
radiomics analysis based on ultrasound imaging has achieved 
several favorable results, especially in the early diagnosis, 
prognosis, and prediction of diseases [6].



3647Abdominal Radiology (2022) 47:3645–3659 

1 3

Filters reduce/remove US speckle noise/help 
preprocessing (review)

Several studies have reported that filters reduce/remove 
speckle noise and help preprocess ultrasound images [9, 12, 
17–19]. For instance, Loizou et al. [20] assessed various 
despeckle filters for ultrasound images of the common carotid 
artery. The authors compared 10 different despeckle filters, 
including linear filter (DsFlsmv, DsFlsminsc), nonlinear filter 
(DsFkuwahara), wiener linear filter (DsFwiener), median filter 
(DsFmedian), hybrid median filter (DsFhmedian), geometric 
filter (DsFgf), anisotropic diffusion filter (DsFad, DsFsrad), 
and coherent nonlinear anisotropic diffusion filter (DsFnldif) 
in software based on texture features, objective image quality 
evaluation, and quantitative image quality metrics. In another 
study, Saoji and Sarode [18] investigated the speckle and 
rician noise reduction in ultrasound images using median and 
Gaussian filters. They have utilized Peak signal-to-noise ratio 
(PSNR) as a statistical quantity for assessing the image qual-
ity. In addition, Duron et al. [19] assessed the inter-slice radi-
omic feature repeatability in ultrasound imaging of the orbit. 
The impact of preprocessing was analyzed using intensity 
standardization (with or without outliers’ removal on whole 
images, bounding boxes or regions of interest, and gray-level 
discretization).

Fig. 1  Study flowchart

Research gap

Recently, few studies have focused on radiomics in response to 
chemoradiotherapy (CRT) and prognosis in locally advanced 
rectal cancer. Additionally, most of those studies used MRI 
[21, 22], FDG-PET [23], and CT images [24]. Notably, the 
mentioned studies have not assessed the efficiency of the filters 
utilized for speckle noise reduction using radiomics model and 
machine learning. Moreover, it has not been reported whether 
radiomics features on the EUS images can predict patient treat-
ment response in locally advanced rectal cancer patients. Thus, 
in the current study, we intended to evaluate the association 
of radiomics textural features of the EUS images with differ-
ent denoising filters in predicting treatment response for rectal 
cancer patients using machine learning algorithms.

Materials and methods

Flowchart

A summary of the present study methods as the “study flow-
chart” is drawn in Fig. 1.
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Data/ethics

This prospective study was approved by the National Ethi-
cal Committee with the registration number of IR.TUMS.
MEDICINE.REC.1399.244. Sixty patients with patho-
logically diagnosed rectal cancer (adenocarcinoma) were 
included with the following criteria: older than 18 years, 
tumor located up to 15 cm from anal verge, subsequent total 
mesorectal resection, and tumor spread to perirectal fat 
(cT3–4) or lymph node involvement. In addition, the patients 
with previous radiation therapy and/or chemotherapy in the 
pelvis region and distant metastases based on the pathologic 
assessment were excluded from the study. Finally, forty-
three patients have been conducted on the pretreatment EUS 
images and postoperative pathologic test. Informed consent 
was obtained from all participants.

Imaging unit/specs

The EUS images were performed using an ultrasonic endo-
scope device (EG-580 UR, Fujifilm, Tokyo, Japan) by radial 
array that produce a 360° image in a plane perpendicular 
to the long axis of the endoscope’s insertion tube with an 
ultrasonic processor SU-1. The main characteristics of the 
device for performing the transrectal endosonographic are 
7.5 MHz frequency, 140° field of view, 2.8-mm working 
channel, and 1250-mm working length. The B-mode images 

were obtained by a gastroenterologist expert in the field of 
oncology with ten years of experience. Rectal cancers can 
be observed on EUS images as hypoechoic masses which 
disrupt the normal five-layer structure of the rectal wall 
(mucosae, muscularis mucosae, submucosa, muscularis pro-
pria, and serosa). The physician captured about five images 
for each patient, and after that, the largest dimension of the 
tumor, as the best image, was chosen. It should be noted that 
the EUS examinations were carried out 1 week before CRT 
and 14 weeks before surgery.

Applied therapy

All patients were treated using three-dimensional confor-
mal radiation therapy with a total dose of 45 Gy (dose frac-
tionation: 1.8 Gy, 25 sessions) to the pelvic nodes, followed 
by a sequential boost of 5.4 Gy (1.8 Gy/day; total dose of 
50.40 Gy). Furthermore, they were undergoing chemother-
apy using capecitabine at a dose of 825 mg/m2 orally, twice 
daily during radiation therapy days. Surgery (total meso-
rectal excision) was performed after 6–8 weeks of the men-
tioned procedures [3].

Grading

Treatment response based on the pathologic postoperative 
data was assessed according to the 4-category American 

Table 1  Parameters of investigated filters

Filter Parameters Definition References

Bilateral Type: nonlinear, window size: 3*3, 
sigma_d:0.8, sigma_r:30

Smoothing images while preserving edges 
using a nonlinear combination of nearby 
image values

Vanithamani and Umamaheswari [26]

Wiener Type: linear, window size: 3*3 Noise from image by comparing desired 
noiseless image would reduce by this tech-
nique. Wiener filter works on the basis of 
computation of local image variance

Jaybhay and Shastri [27]

Lee Type: linear, window size: 3*3, iterations: 3 Based on the minimum mean square error. 
For removing speckle noise, this filter 
computes a linear combination of the center 
pixel intensity in a filter window with an 
average intensity of the window

Santoso et al. [28]

Frost Type: linear, window size: 3*3, Damping 
factor: 1

Adaptive and exponentially weighted averag-
ing filter based on the coefficient of varia-
tion and is derived from the minimum mean 
square error algorithm. It can suppress the 
speckle while at the same preserving the 
edges

Santoso et al. [28] and Kupidura [29]

Median Type: nonlinear, window size: 3*3 Spatial nonlinear edge-preserving filter. The 
pixel of interest is replaced by the median 
value within the filter window

Santoso et al. [28], and Kupidura [29]

Wavelet Type: discrete wavelet filtering, level: 2, 
wavelet name: Daubechies

Includes three steps: forward transformation 
of the image to the wavelet domain, reduc-
tion of the wavelet coefficients, and inverse 
transformation to the native domain

Mohd Sagheer and George [30]
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Joint Committee on Cancer and College of American Pathol-
ogists (AJCC/CAP).

All samples were analyzed by one experienced patholo-
gist and were further reviewed by a dedicated gastrointesti-
nal pathologist using the modified tumor regression grade 
(TRG) to determine the pathologic response. Notably, the 
pathologists were blinded to the clinical data. The TRG 
was classified as follows: grade 0 (complete response) as no 
viable cancer cell; grade I (moderate response) single cells 
or small groups of cancer cells are visible; grade II (minimal 
response) is residual cancer outgrown by fibrosis; and grade 
III (poor response) is fibrosis outgrown by residual cancer. 
According to the results of pathologic grading, the patients 
were divided into two classes; the responder (grade 0 or 
grade I) as class 1 and/or non-responder (grade II or grade 
III) as class 0 [25].

Filters

To improve the visual quality, noise reduction is con-
sidered as a preprocessing step for further analysis, like 
image segmentation of the ultrasound images [20]. Sev-
eral new ultrasound image filters are currently used for 
noise reduction [10]. In the current work, median, wavelet, 
lee, frost, bilateral, and wiener filters were used to reduce 
speckle noise (details of filters are described in Table 1). 
This study assessed the effects of the filters mentioned 
above on classification performance.

Performance evaluation—PSNR & SSIM

In addition, the performance of the filters was evaluated by 
MATLAB software (v.2019b), in terms of PSNR, which is 
the root mean square error (MSE) between noise free and 
denoised images (Eq. 1), and also the structural similar-
ity index (SSIM), which measures the similarity between 
original and denoised images (Eq. 2).

Here, �x,�y and �x, �y are the mean and standard deviations 
of the input and denoised images, in that order. �xy is the 
cross-covariance of the image. Notably, the applied method’s 
performance is good when the PSNR value is high and the 
SSIM value is close to 1 [9].

(1)10log10
255

2

MSE
,

(2)SSIM(x, y) =

(

2�x�y + c1
)(

2�xy + c2
)

(

�2
x + �2

y + c1
)(

�2
x + �2

y + c2
) .

Tumor segmentation

The EUS images were segmented using the open-source 
software package 3D slicer v. 4.10.2. One slice containing 
the largest dimension of the tumor was selected and then 
contoured by two physicians to manually place the region of 
interest (ROI) covering the rectal tumor. One physician was 
a radiologist specializing in rectal imaging with 5 years of 
experience; another was a radio-oncologist specializing in 
gastrointestinal cancer with 5 years of experience.

Radiomics features

The 102 radiomics features were extracted on EUS images 
using the “Pyradiomics” package (v3.0.1) in Python for each 
patient. The features consisted of first order, shape based, 
and textural features. Texture sets included gray-level run-
length matrix (GLRLM), gray-level co-occurrence matrix 
(GLCM), gray-level size zone matrix (GLSZM), gray-level 
dependence matrix (GLDM), and neighboring gray tone dif-
ference matrix (NGTDM).

Need for FS—fivefold cross‑validation

The 43 investigated patients were divided into the training 
and test sets using the stratified fivefold cross-validation 
method, independent of each other. After splitting, the mod-
els were built with the training data and evaluated with the 
test set to get the accuracy rate and other parameters, which 
help to compare the models and find the best classifier for 
the data. In stratified fivefold cross-validation, the partitions 
are selected in such a way that they all share the same bal-
ance between class labels (0, 1) [31–33].

Feature selection: AUC + LASSO

The feature reduction should be carried out because there is 
a risk of over-fitting analyses when the number of derived 
features becomes comparable to or exceeds the number of 
samples. The receiver operating characteristic (ROC) curve 
was calculated to assess the predictive power of the EUS 
features. The features with an AUC (area under the curve) 
of > 0.5 were considered high power. Then, to select useful 
predictive features, the least absolute shrinkage and selection 
operator (LASSO) method were applied for the training set 
[5]. In addition, the other clinical pathological and charac-
teristics, including gender, age, pre-CRT T stage, pre-CRT N 
stage, tumor differentiation (well, moderate, poor), distance 
from the anal verge (cm), and length of tumor (cm) were 
assessed.
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Classifiers + prediction power evaluation

The selected features as covariates (X) and the pathology 
results of the rectal cancer as a dependent variable (Y) were 
used in K-nearest neighbor (KNN), support vector machine 
(SVM), logistic regression (LR), decision tree (DT), ran-
dom forest (RF), and naive Bayes (NB) methods to build 
a prediction model. Additionally, the independent test set 
was utilized to evaluate the performance of the model. The 
machine learning algorithms were implemented on Python’s 
“scikit-learn” package (v 0.24.2). The power of the men-
tioned models for predicting therapeutic response was cal-
culated using the following parameters: AUC, accuracy, 
precision, sensitivity, specificity, and MSE.

Gold‑standard evaluation

Intraclass correlation coefficient (ICC) with the 95% confi-
dence interval (CI) was utilized for interobserver agreement. 
ICC was evaluated based on a two-way random effect model 

among the investigated features. Equation 3 is used for the 
ICC calculation [14, 34]:

where MSR defines “the mean square for rows, each fea-
ture value for the two observers,” MSW indicates “the mean 
square for the residual source of variance,” k relates to the 
number of the observers, and n is the number of subjects.

The R package (v. 1.4.1106) was used for ICC computa-
tions. The P values of less than 0.05 were considered statisti-
cally significant.

Results

Patient characteristics

The patient demographic and clinicopathological informa-
tion and also the results related to the pathologic response 

(3)ICC =
MSR −MSW

MSR + (k − 1)MSW
,

Table 2  The patient 
characteristics, 
clinicopathological information, 
and pathologic response of 
rectal cancer

Characteristic All patients (n = 43) Training set (n = 34) Test set (n = 9)

Gender
 Male 28 23 5
 Female 15 11 4

Age (years) Mean ± SD (range)
 Male 60 ± 12.5 (39–81) 61 ± 11 (29–80) 59 ± 13 (31–79)
 Female 58 ± 12.5 (31–80) 60 ± 12 (32–80) 56 ± 11 (35–77)

T stage
 T1 2 1 1
 T2 5 3 2
 T3 26 22 4
 T4 10 8 2

N stage
 N0 6 4 2
 N1 12 10 2
 N2 25 20 5

Pathologic differentiation
 Well 12 9 3
 Moderate 22 18 4
 Poor 9 7 2

Distance from anal verge (cm)
 Low rectal cancer (0–6 cm) 21 16 5
 Middle rectal cancer (6–12 cm) 14 11 3
 High rectal cancer (> 12 cm) 8 7 1

Response to NCRT 
 TRG = 0 7 5 2
 TRG = 1 11 8 3
 TRG = 2 21 18 3
 TRG = 3 4 3 1
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of rectal cancer are presented in Table 2. As depicted, eight-
een patients were classified as responders and twenty-five 
were non-responders. The training and test dataset showed 
a reasonable distribution between the pCR rate and clinico-
pathological features.

Filter outputs + final selected features

A sample of the EUS image along with the output of each 
filter (bilateral, wiener, lee, frost, median, and wavelet) used 
for speckle noise removal is shown in Fig. 2. For each fil-
ter output, 102 features were extracted from the delineated 

target volume and categorized as follows: shape (9 features), 
first order (18 features), and texture (24 GLCM, 14 GLDM, 
16 GLRLM, 16 GLSZM, and 5 NGTDM features) (Supple-
mentary 1). The selected features (using LASSO method) as 
the most significant features for the original image and each 
filter output are shown in Fig. 3.

Prediction results

The clinicopathological predictors were added to the 
selected discriminative radiomics features and then a EUS 
radiomics predictive model was developed using machine 
learning models.

Fig. 2  The proposed denoising filters for a sample image, a Original 
image, b Bilateral filter, c Wiener filter, d Lee filter, e Frost filter, f 
Median filter, and g Wavelet filter. To the eye, these images do not 

look very different from each other, and the major difference is the 
quantity value (radiomics feature values)
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The predictive ability metrics for each model (KNN, LR, 
SVM, DT, RF, and NB) are depicted in Table 3. According 
to Table 3, the SVM classifier provided the best capability 
to predict patients response to NCRT with the average AUC 

of 0.76 (accuracy: 71.5%; precision: 73.0%; sensitivity: 
80.2%; and specificity: 60.9%). Moreover, the LR classifier 
showed a good performance with the average AUC of 0.71 
(accuracy: 70.0%; precision: 75.0%; sensitivity: 69.8%; and 

Fig. 3  The selected features using LASSO model via stratified fivefold cross-validation in filtered images
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specificity: 70.0%). In addition, the training accuracy was 
remarkably increased than the testing accuracy indicating 
the investigated models were overfit for treatment response 
predictions. This can be due to the too small events number 

to generate a stable model. Figure 4 shows ROC of LR and 
SVM models for the original image and wavelet filter output 
in test data. 

Table 3  Performance assessment for the investigated models and filters in train and test data

The LR and SVM models from the wavelet filter had the best results

Filters Model AUC Accuracy Precision Sensitivity Specificity MSE

Train Test Train Test Train Test Train Test Train Test Train Test

Original KNN 0.31 0.26 0.78 0.642 0.834 0.71 0.775 0.716 0.783 0.533 0.219 0.357
LR 0.75 0.64 0.666 0.638 0.896 0.773 0.443 0.61 0.933 0.66 0.333 0.361
DT 0.83 0.508 0.825 0.514 0.896 0.5 0.778 0.483 0.883 0.533 0.174 0.485
SVM 0.81 0.6 0.734 0.614 0.754 0.69 0.761 0.66 0.7 0.533 0.265 0.385
NB 0.82 0.65 0.72 0.576 0.748 0.613 0.737 0.6 0.7 0.533 0.279 0.423
RF 0.86 0.483 0.856 0.485 0.912 0.433 0.821 0.433 0.9 0.533 0.14 0.51

Bilateral KNN 0.81 0.65 0.765 0.619 0.852 0.653 0.693 0.683 0.85 0.533 0.234 0.380
LR 0.85 0.66 0.764 0.633 0.753 0.703 0.846 0.66 0.66 0.6 0.235 0.366
DT 0.88 0.541 0.871 0.538 0.973 0.623 0.793 0.616 0.966 0.466 0.128 0.461
SVM 0.76 0.75 0.848 0.695 0.869 0.716 0.860 0.783 0.833 0.6 0.151 0.304
NB 0.81 0.8 0.750 0.661 0.810 0.763 0.708 0.683 0.8 0.66 0.249 0.338
RF 0.906 0.508 0.901 0.49 0.97 0.573 0.889 0.5 0.966 0.533 0.075 0.49

Wiener KNN 0.87 0.63 0.801 0.685 0.893 0.693 0.72 0.75 0.9 0.6 0.198 0.314
LR 0.88 0.79 0.817 0.785 0.814 0.809 0.860 0.833 0.766 0.733 0.182 0.214
DT 0.94 0.483 0.939 0.485 0.957 0.533 0.93 0.433 0.95 0.533 0.06 0.514
SVM 0.78 0.76 0.885 0.661 0.889 0.730 0.900 0.7 0.866 0.6 0.114 0.338
NB 0.82 0.72 0.719 0.695 0.971 0.933 0.5 0.5 0.983 0.933 0.280 0.304
RF 0.93 0.658 0.932 0.66 0.934 0.68 0.944 0.71 0.916 0.6 0.067 0.33

Lee KNN 0.8 0.58 0.690 0.576 0.685 0.570 0.793 0.733 0.566 0.399 0.309 0.423
LR 0.91 0.7 0.849 0.761 0.874 0.783 0.848 0.783 0.85 0.733 0.150 0.238
DT 0.903 0.558 0.901 0.547 0.938 0.553 0.889 0.45 0.916 0.66 0.098 0.452
SVM 0.95 0.64 0.879 0.671 0.852 0.653 0.944 0.8 0.8 0.533 0.12 0.328
NB 0.83 0.71 0.734 0.576 0.761 0.603 0.747 0.616 0.716 0.533 0.265 0.423
RF 0.886 0.583 0.880 0.588 0.869 0.606 0.943 0.7 0.816 0.466 0.113 0.419

Frost KNN 0.84 0.51 0.803 0.538 0.804 0.546 0.848 0.583 0.75 0.466 0.196 0.461
LR 0.85 0.54 0.788 0.485 0.792 0.533 0.834 0.45 0.733 0.533 0.211 0.514
DT 0.859 0.583 0.854 0.576 0.923 0.683 0.801 0.566 0.916 0.6 0.145 0.423
SVM 0.76 0.67 0.849 0.666 0.819 0.65 0.931 0.833 0.75 0.466 0.150 0.333
NB 0.79 0.58 0.621 0.547 0.826 0.733 0.390 0.333 0.9 0.799 0.378 0.452
RF 0.889 0.6 0.893 0.609 0.885 0.67 0.929 0.733 0.85 0.466 0.1 0.39

Median KNN 0.92 0.82 0.863 0.752 0.898 0.843 0.847 0.7 0.883 0.799 0.136 0.247
LR 0.89 0.65 0.863 0.676 0.896 0.766 0.847 0.633 0.883 0.733 0.136 0.323
DT 0.919 0.641 0.917 0.64 0.943 0.703 0.904 0.616 0.933 0.66 0.082 0.357
SVM 0.99 0.86 0.954 0.752 0.958 0.77 0.958 0.816 0.95 0.66 0.045 0.247
NB 0.89 0.68 0.795 0.661 0.882 0.85 0.720 0.55 0.883 0.8 0.204 0.338
RF 0.939 0.608 0.939 0.609 0.948 0.69 0.944 0.616 0.933 0.6 0.105 0.35

Wavelet KNN 0.93 0.89 0.878 0.819 0.922 0.86 0.846 0.833 0.916 0.799 0.121 0.180
LR 0.98 0.92 0.909 0.847 0.955 0.9 0.874 0.833 0.95 0.866 0.090 0.152
DT 0.938 0.675 0.938 0.671 0.944 0.74 0.943 0.75 0.943 0.6 0.061 0.328
SVM 0.98 0.9 0.931 0.847 0.944 0.86 0.930 0.883 0.933 0.799 0.068 0.152
NB 0.92 0.89 0.871 0.761 0.913 0.826 0.846 0.733 0.9 0.799 0.128 0.238
RF 0.945 0.7 0.947 0.7 0.945 0.743 0.958 0.733 0.933 0.66 0.052 0.295
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Denoising results

The average results of the denoising filters according to 
PSNR and SSIM metrics are presented in Table 4. It can be 
seen that PSNR and SSIM for the wavelet filter are 40.02 
and 0.96, respectively. The correlation between the selected 
features of the wavelet filter is shown in Fig. 5. As can be 

seen, Gldm_SmallDependenceHighGrayLevelEmphasis 
is highly correlated with Glszm_GrayLevelVariance and 
Gldm_SmallDependenceLowGrayLevelEmphasis (corre-
lation coefficients > 0.8).

Based on the machine learning results, PSNR, and SSIM 
values, the wavelet filter had the best performance (speckle 
noise reduction) chosen for image preprocessing.

Experts’ correlation/agreement

The ICC of the extracted features between the two physi-
cians ranged from 0.7 to 0.92. Figure 6 shows the ICC for 
the selected features extracted from the original image and 
different denoising filters. According to this Figure, there 
was a good agreement between the two observers with 
ICC higher than 0.7. Due to the different segmentations of 
images between physicians, the lowest limit of ICC values 
was found for shape features (0.7).

Fig. 4  ROC curve a LR model for the original image, b SVM model for the original image, c LR model for the filtered by wavelet, and d SVM 
model for the filtered by wavelet in the test data

Table 4  Average results of denoising algorithms

Denoising filters PSNR SSIM

Bilateral 31.04 0.95
Wiener 38.54 0.95
Lee 33.72 0.94
Frost 30.52 0.93
Median 29.58 0.92
Wavelet 40.02 0.96
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Discussion

The main clinical challenge in rectal cancer is the preopera-
tive diagnosis of complete pathologic response in patients 
with LARC after NCRT. Commonly, specimens resected 
surgically are histopathologically examined and analyzed 
by experienced pathologists; pCR is defined as the absence 
of viable tumor cells in the primary tumor and lymph nodes 
[35]. In this scenario, radiomics has emerged as a promis-
ing tool that may serve as an imaging biomarker for tumor 
response [36]. This technique is used for clinical application 
to promote structured generation and application of quali-
tative and quantitative cancer treatment information [35, 
37]. The image acquisition, preprocessing, segmentation of 
ROIs, feature extraction, and modeling are involved during 
the radiomics process [38].

This study assessed the feasibility of predicting out-
comes for 43 rectal cancer patients using radiomics features 
extracted from the EUS images to identify patients with pCR 
and non-pCR. Hopefully, the results can provide additional 
information to decide whether to implement the watch-and-
wait strategy for low-risk patients, in order to improve their 
quality of life. Furthermore, early detection of non-NCRT 
responders would facilitate physicians’ decision-making to 
find alternative methods, such as targeted therapy and immu-
notherapy [39].

EUS and MRI as non-ionization radiation modalities 
can be used as complementary methods in the preopera-
tive staging of rectal cancer. Compared to MRI, EUS is 
more accurate in determining rectal wall penetration of the 
tumor, which is also a more cost effective, fast, conveni-
ent, accessible, and safe method [5, 6]. However, the quality 
of ultrasound images is highly dependent on interobserver 

Fig. 5  Heatmap of the selected best radiomics features from the wavelet filter output
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variability, the abundance and experience of operators or 
diagnosticians, as well as different institutes, and manu-
facturers [40]. Ultrasound also presents unique challenges, 
including noise and artifacts that cause analysis difficulty, 
especially behind bone and air. Texture features and qual-
ity of the images, which carry out important information 
related to the tissues and organs [20], are affected by speckle 

noise [11, 12]. Thus, speckle noise reduction is a crucial 
research subject in ultrasound image processing. The two 
main purposes for speckle noise reduction are to improve 
human interpretation and despeckling, which are the pre-
processing steps for many ultrasound image analyses [12]. 
Moreover, to increase the image detail, quality, and diag-
nostic accuracy, preprocessing is a crucial step performed 

Fig. 6  Intraclass correlation coefficients of the two observers for the selected features extracted from the original and different denoising filters
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by different traditional filters in the current study [25]. All in 
all, the results of the current study and other investigations 
that used ultrasound in other organs, such as the breast and 
thyroid [41–45], show that radiomic analysis can be suc-
cessfully performed on ultrasound data and helped render 
ultrasound-based tumor imaging more accurate, reproduc-
ible, and reliable.

In a study, Karaoğlu et al. [9] compared deep learning 
(WIN5-RB, DPDNN, and FPD-MNet), block-matching and 
3D filtering (BM3D), and classical filters (bilateral, frost, 
kuan, lee, mean, and median) for speckle denoising. They 
have expressed that, although the performances of the deep 
learning were superior for despeckling ultrasound image 
noise compared to BM3D and classical filters in terms of 
PSNR and SSIM criteria, this method needs more time for 
training. In addition, in high-resolution images, deep learn-
ing performed better denoising; however, it is only possible 
with high computational capacity. For these reasons, we 
have used the six denoising traditional filters (bilateral, wie-
ner, lee, frost, median, and wavelet filters) and their effects 
on radiomics features for reducing the ultrasound speckle 
noise.

The present work identified 8, 6, 10, 11, 11, 11, and 8 
significant features including shape, first order, and texture 
features for predicting pCR versus non-pCR, from the origi-
nal image, bilateral, wiener, lee, frost, median, and wavelet 
filters, respectively. Most importantly, we found that the best 
predictor features for pCR and non-pCR were based on the 
wavelet filter. In summary, the wavelet filter tends to give 
good results for all three metrics (radiomics, PSNR, and 
SSIM). This is the transform domain technique because the 
image is first converted into a wavelet domain and then the 
despeckling operation is performed by utilizing the different 
properties of the image. Several properties of the wavelet 
transform that make this representation attractive for denois-
ing are multiresolution, edge detection, and edge clustering, 
as expressed in the previous studies [41–43,46,47].

The 8 features from the wavelet filter include Shape_
SurfaceVolumeRatio, Firstorder_Kurtosis, Glcm_Cor-
relation, Gldm_SmallDependenceLowGrayLevelEmpha-
sis, Gldm_SmallDependenceHighGrayLevelEmphasis, 
Glszm_GrayLevelVariance, Ngtdm_Busyness, and Tumor 
Differentiation, which are of great value in accurately 
to identify the treatment response. Chen et al. [5] inte-
grated EUS image features of rectal cancer for predicting 
tumor deposits preoperatively. In their study, MinInten-
sity, HaralickCorrelation_AllDirection_offset6_SD, and 
HaralickCorrelation_AllDirection_offset9_SD features 
were associated with tumor deposits. In another study, 
Theek et al. [48] assessed whether a radiomic analysis 
on contrast-enhanced ultrasound data allows to automati-
cally differentiate three tumor models in an animal study. 
The selected radiomic features associated with tumor 

phenotypes included Median Image Intensity, Energy 
of Gray-Level Co-Occurrence Matrix, Vessel Network 
Length, and Run-Length Nonuniformity of the Gray-Level 
Run-Length Matrix. Based on these findings, it can be 
concluded that there are different image biomarkers for 
different organs and clinical results because of the various 
biological mechanisms behind the processes.

Owing to the results, LR and SVM models had the best 
performance among the six different investigated machine 
learning methods, and the wavelet filter indicated a reason-
able result in these mentioned models. Several studies have 
used machine learning methods to analyze different modali-
ties’ images and defined/introduced the best model/models. 
For instance, Shayesteh et al. [49] investigated the perfor-
mance of individual and ensemble machine learning models 
in rectal cancer patients based on MR imaging to predict 
NCRT response. The investigated models included SVM, 
Bayesian network, neural network, and KNN classifiers 
used individually and together. The best result was related 
to Bayesian network model with the AUC and accuracy 
of 75.2% and 80.9%, respectively. The AUC and accuracy 
values in the ensemble model were obtained at 97.8% and 
92.8% in the testing set, respectively. Moreover, Ma et al. 
[13] demonstrated that the SVM model had better results 
(AUC: 0.862), in predicting tumor pathologic features of 
rectal cancer when they investigated MRI-based radiomics 
model derived from T2-weighted images. Dasgupta et al. 
[45] investigated quantitative ultrasound based on higher-
order texture derivatives in predicting the response to NCRT 
in patients with locally advanced breast cancer. To develop 
radiomics models of response prediction, three machine 
learning algorithms based on linear discriminant (FLD), 
KNN, and SVM were used. A KNN model provided the best 
results with the sensitivity, specificity, accuracy, and AUC 
of 87%, 81%, 82%, and 0.86, in that order. These controver-
sies may be attributed to several factors: various imaging 
modalities, the image acquisition machine and parameters, 
image preprocessing algorithm, image segmentation, tumor 
regions, and feature selection algorithms [24]. In addition, 
no ML method is better than any other for all problems. Our 
results show that LR and SVM models with an accuracy of 
70.0% and 71.5% can be used for EUS images before CRT, 
respectively. Secondly, the wavelet filter should be used for 
preprocessing EUS images and machine learning.

There are several limitations to the current project. The 
first is related to the small sample size; therefore, more stud-
ies with more extensive patient data are required to check 
our results further. Second, we applied stratified fivefold 
cross-validation to our data, and no real distinct validation 
datasets were available to assess various methods. Also, 
our project was performed only in one center, which is the 
third limitation. Although the operator dependence of EUS 
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images would reduce when the data are collected from one 
center, it could be a novel subject to investigate the intraob-
server dependency at different centers. Additionally, enter-
ing tumor’s volume (instead of one slice used in our study) 
to calculate radiomics features can capture more information 
about the entire tumor.

Conclusion

Noninvasive ultrasound imaging plays a vital role in the 
diagnosis of rectal cancer. Speckle noise observed in ultra-
sound images can affect the image quality and diagnosis; 
therefore, any method that helps decrease this noise must be 
utilized. In this regard, many filters and methods have been 
developed for that purpose. In the current study, the speckle 
noise reduction was performed using traditional filters, 
including bilateral, frost, wiener, lee, wavelet, and median 
filters, compared by different machine learning models. The 
findings demonstrated that the LR and SVM models had 
favorable results among the different machine learning meth-
ods for the prediction of treatment response. Additionally, 
among the above-mentioned filters, the wavelet filter had the 
best performance on the EUS images in rectal cancer based 
on the radiomics model and PSNR and SSIM parameters.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00261- 022- 03625-y.

Acknowledgements This study was extracted from a Ph.D. thesis from 
the first author approved by the Tehran University of Medical Sciences. 
The authors would like to thank the staff of the Medical Imaging and 
Radiotherapy Oncology centers in Firouzgar Hospital of Iran Univer-
sity of Medical Sciences (Tehran, Iran).

Author contributions SA, HAb, and MA contributed to conceptual-
ization, SA, HAb, and SRM contributed to methodology, SA, HAb, 
HAr, and SRM contributed to formal analysis and investigation, SA 
contributed to writing and preparation of the original draft, HAb, HAr, 
MB, AMA, PF, MA, and SRM contributed to writing, reviewing, and 
editing of the manuscript, SA, MA, and SRM contributed to funding 
acquisition, AMA and PF provided resources, MA, SRM, and HAr 
performed supervision.

Funding This work was supported by the Tehran University of Medical 
Sciences, under Grant No. 49134.

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

Ethical approval All procedures performed in studies involving human 
participants were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the 1964 Helsinki 
Declaration and its later amendments or comparable ethical standards. 

The study was approved by the Tehran University of Medical Sciences 
(No. IR.TUMS.MEDICINE.REC.1399.244).

References

 1. Chen L-D, Wang W, Xu J-B, et al. Assessment of rectal tumors 
with shear-wave elastography before surgery: Comparison with 
endorectal US. Radiology. 2017;285(1):279–292.

 2. Chen L Da, Liang JY, Wu H, et al. Multiparametric radiomics 
improve prediction of lymph node metastasis of rectal cancer 
compared with conventional radiomics. Life Sci. 2018;208:55–63.

 3. Cui Y, Yang X, Shi Z, et al. Radiomics analysis of multiparametric 
MRI for prediction of pathological complete response to neoad-
juvant chemoradiotherapy in locally advanced rectal cancer. Eur 
Radiol. 2019;29(3):1211–1220.

 4. Pizzi AD, Chiarelli AM, Chiacchiaretta P, et al. OPEN MRI - 
based clinical - radiomics model predicts tumor response before 
treatment in locally advanced rectal cancer. Sci Rep. 2021;1–11.

 5. Chen L-D, Li W, Xian M-F, et al. Preoperative prediction of 
tumour deposits in rectal cancer by an artificial neural network–
based US radiomics model. Eur Radiol. 2020;30(4):1969–1979.

 6. Kav T, Bayraktar Y. How useful is rectal endosonogra-
phy in the staging of rectal cancer? World J Gastroenterol. 
2010;16(6):691–697.

 7. Sun Q, Lin X, Zhao Y, et al. Deep Learning vs. Radiomics for Pre-
dicting Axillary Lymph Node Metastasis of Breast Cancer Using 
Ultrasound Images: Don’t Forget the Peritumoral Region. Front 
Oncol. 2020;10:1–12.

 8. Cusumano D, Dinapoli N, Boldrini L, et  al. Fractal-based 
radiomic approach to predict complete pathological response 
after chemo-radiotherapy in rectal cancer. Radiol Medica. 
2018;123(4):286–295.

 9. Karaoğlu O, Bilge HŞ, Uluer İ. Removal of speckle noises from 
ultrasound images using five different deep learning networks. 
Eng Sci Technol an Int J. 2021.https:// doi. org/ 10. 1016/j. jestch. 
2021. 06. 010

 10. Singh P, Mukundan R, De Ryke R. Texture based quality analysis 
of simulated synthetic ultrasound images using local binary pat-
terns. J Imaging. 2018;4(1):1–13.

 11. Feng D, Wu W, Li H, Li Q. Speckle noise removal in ultrasound 
images using a deep convolutional neural network and a specially 
designed loss function. In: Q. Li et al. (ed) In International Work-
shop on Multiscale Multimodal Medical Imaging. Springer.Cham. 
2019, pp 85–92.

 12. Kaur PP, Singh T. Speckle Noise Reduction in Ultrasound Images. 
NCCI 2010 -National Conference on Computational Instrumenta-
tion CSIO Chandigarh. 2010:198–203.

 13. Ma X, Shen F, Jia Y, Xia Y, Li Q, Lu J. MRI-based radiomics of 
rectal cancer: Preoperative assessment of the pathological fea-
tures. BMC Med Imaging. 2019;19(1):1–7.

 14. Shiri I, Hajianfar G, Sohrabi A, et  al. Repeatability of radi-
omic features in magnetic resonance imaging of glioblastoma: 
Test–retest and image registration analyses. Med Phys. 2020;47: 
4265–4280.

 15. Guiot J, Vaidyanathan A, Deprez L, et al. A review in radiomics: 
Making personalized medicine a reality via routine imaging. Med 
Res Rev. 2022;42(1):426–440.

 16. Hou M, Sun JH. Emerging applications of radiomics in rectal can-
cer: State of the art and future perspectives. World J Gastroenterol. 
2021;27(25):3802–3814.

https://doi.org/10.1007/s00261-022-03625-y
https://doi.org/10.1016/j.jestch.2021.06.010
https://doi.org/10.1016/j.jestch.2021.06.010


3659Abdominal Radiology (2022) 47:3645–3659 

1 3

 17. Wang S, Huang TZ, Zhao X Le, Mei JJ, Huang J. Speckle noise 
removal in ultrasound images by first- and second-order total vari-
ation. Numer Algorithms. 2018;78(2):513–533.

 18. Saoji SU, Sarode M V. Speckle and Rician Noise Removal from 
Medical Images and Ultrasound Images. Int J Recent Technol 
Eng. 2020;8(5):1851–1854.

 19. Duron L, Savatovsky J, Fournier L, Lecler A. Can we use radi-
omics in ultrasound imaging? Impact of preprocessing on feature 
repeatability. Diagn Interv Imaging. 2021;102(11):659–667.

 20. Loizou CP, Theofanous C, Pantziaris M, Kasparis T. Despeckle 
filtering software toolbox for ultrasound imaging of the com-
mon carotid artery. Comput Methods Programs Biomed. 
2014;114(1):109–124.

 21. Boldrini L, Cusumano D, Chiloiro G, et al. Delta radiomics for 
rectal cancer response prediction with hybrid 0.35 T magnetic 
resonance-guided radiotherapy (MRgRT): a hypothesis-generating 
study for an innovative personalized medicine approach. Radiol 
Medica. 2019;124(2):145–153.

 22. Delli Pizzi A, Chiarelli AM, Chiacchiaretta P, et al. MRI-based 
clinical-radiomics model predicts tumor response before treatment 
in locally advanced rectal cancer. Sci Rep. 2021;11(1):5379-5390.

 23. Lovinfosse P, Polus M, Van Daele D, et al. FDG PET/CT radiom-
ics for predicting the outcome of locally advanced rectal cancer. 
Eur J Nucl Med Mol Imaging. 2018;45(3):365–375.

 24. Wang J, Shen L, Zhong H, et al. Radiomics features on radiother-
apy treatment planning CT can predict patient survival in locally 
advanced rectal cancer patients. Sci Rep. 2019;9(1):1–9.

 25. Shayesteh SP, Alikhassi A, Farhan F, et al. Author Correction: 
Prediction of Response to Neoadjuvant Chemoradiotherapy by 
MRI-Based Machine Learning Texture Analysis in Rectal Cancer 
Patients. J Gastrointest Cancer. 2020; 51(2):601-609.

 26. Vanithamani R, Umamaheswari G. Speckle reduction in ultra-
sound images using Neighshrink and bilateral filtering. J Comput 
Sci. 2014;10(4):623–631.

 27. Jaybhay J, Shastri R. A Study of Speckle Noise Reduction Filters. 
Signal Image Process An Int J. 2015;6(3):71–80.

 28. Santoso AW, Bayuaji L, Sze LT, Lateh H, Zain JM. Comparison of 
various speckle noise reduction filters on synthetic aperture radar 
image. Int J Appl Eng Res. 2016;11(15):8760–8767.

 29. Kupidura P. Comparison of filters dedicated to speckle suppres-
sion in SAR images. Int Arch Photogramm Remote Sens Spat Inf 
Sci - ISPRS Arch. 2016;41:269–276.

 30. Mohd Sagheer S V., George SN. A review on medical image 
denoising algorithms. Biomed Signal Process Control. 
2020;61:102036.

 31. Forman G, Scholz M. Apples-to-Apples in Cross-Validation Stud-
ies : Pitfalls in Classifier Performance Measurement. Acm Sigkdd 
Explorations Newsletter. 2010;12(1):49–57.

 32. Berrar D. Cross-Validation Cross-validation. Encyclopedia of 
Bioinformatics and Computational Biology 2018;1:542–545.

 33. Purushotham S, Tripathy BK. Evaluation of Classifier Models 
Using Stratified Tenfold Cross Validation Techniques. Interna-
tional Conference on Computing and Communication Systems. 
2012;680–690.

 34. Lee SE, Han K, Kwak JY, Lee E, Kim EK. Radiomics of US 
texture features in differential diagnosis between triple-negative 
breast cancer and fibroadenoma. Sci Rep. 2018;8(1):2–9.

 35. Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for evalua-
tion of pathological complete response to neoadjuvant chemora-
diotherapy in locally advanced rectal cancer. Clin Cancer Res. 
2017;23(23):7253–7262.

 36. Horvat N, Bates DDB, Petkovska I. Novel imaging techniques of 
rectal cancer: what do radiomics and radiogenomics have to offer? 
A literature review. Abdom Radiol. 2019;44(11):3764–3774.

 37. Huang YQ, Liang CH, He L, et al. Development and valida-
tion of a radiomics nomogram for preoperative prediction 
of lymph node metastasis in colorectal cancer. J Clin Oncol. 
2016;34(18):2157–2164.

 38. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more 
than pictures, they are data. Radiology. 2016;278(2):563–577.

 39. Chen H, Shi L, Nam K, et al. MRI Radiomics for Prediction of 
Tumor Response and Downstaging in Rectal Cancer Patients after 
Preoperative Chemoradiation. Advancesradonc. 2020;5(6):1–10.

 40. Jin J, Zhu H, Zhang J, Ai Y, Zhang J, Teng Y. Multiple U-Net-
Based Automatic Segmentations and Radiomics Feature Stability 
on Ultrasound Images for Patients With Ovarian Cancer. Frontiers 
in Oncology. 2021;18(10):1–8.

 41. Zhou H, Jin Y, Dai L, et al. Differential Diagnosis of Benign and 
Malignant Thyroid Nodules Using Deep Learning Radiomics of 
Thyroid Ultrasound Images. Eur. J. Radiol. 2020; 127: 108992.

 42. Qiu X, Jiang Y, Zhao Q, et al. Could Ultrasound-Based Radiomics 
Noninvasively Predict Axillary Lymph Node Metastasis in Breast 
Cancer?,” J. Ultrasound Med. 2020; 39(10):1897–1905.

 43. Wang Y, Yue W, Li X, et al. Comparison Study of Radiomics and 
Deep Learning-Based Methods for Thyroid Nodules Classification 
Using Ultrasound Images. IEEE Access. 2020; 8: 52010–52017.

 44. DiCenzo D, Quiaoit K, Fatima K, et al. Quantitative ultrasound 
radiomics in predicting response to neoadjuvant chemotherapy in 
patients with locally advanced breast cancer: Results from multi-
institutional study,” Cancer Med.2020; 9(16):5798–5806.

 45. Dasgupta A, Brade S, Sannachi L, et al. Quantitative ultrasound 
radiomics using texture derivatives in prediction of treatment 
response to neo-adjuvant chemotherapy for locally advanced 
breast cancer. Oncotarget. 2020;11(42):3782–3792.

 46. Rahman MM, Azim M, Mina, Uddin S. Speckle noise reduction 
in ultrasound images by wavelet thresholding based on subband 
mean difference. Int J Tomogr Stat. 2012;20(2):91–97.

 47. Bhuiyan MIH, Ahmad MO, Swamy MNS. New spatially adaptive 
wavelet-based method for the despeckling of medical ultrasound 
images. Proc - IEEE Int Symp Circuits Syst. 2007;2347–2350.

 48. Theek B, Opacic T, Magnuska Z, Lammers T, Kiessling F. Radi-
omic analysis of contrast-enhanced ultrasound data. Sci Rep. 
2018;8(1):1–9.

 49. Shayesteh SP, Alikhassi A, Fard Esfahani A, et al. Neo-adjuvant 
chemoradiotherapy response prediction using MRI based ensem-
ble learning method in rectal cancer patients. Phys Medica. 
2019;62:111–119.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.


