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A B S T R A C T   

Purpose: We propose a novel data-driven approach to extract and present large-scale functional brain networks 
from functional magnetic resonance imaging (fMRI) data using spatiotemporal self-organizing maps (STSOM) 
clustering, accounting for the properties of the brain functional networks being spatially structured and inter-
hemispherically symmetric. Also, a novel group-wise analysis is proposed based on restricted Frechet mean to 
identify group-level networks. The alteration of resulted networks in left and right mesial temporal lobe epilepsy 
(mTLE) is studied. 
Methods: Thirty-five unilateral mTLE patients (21 left-mTLE (LTLE) and 14 right-mTLE (RTLE)), were prospec-
tively studied. Eleven healthy control (HC) subjects were also recruited. To determine the functional networks of 
the whole brain, we extracted individual and group-level networks using spatiotemporal self-organizing maps 
and the restricted Frechet mean method, respectively. We applied the resulted networks to specify within and 
between-network alteration in functional connectivity (FC) in the LTLE and RTLE patients compared to the 
control cohort. 
Results: We obtained seven networks namely default-mode (DMN), sensorimotor (SMN), visual (VSN), subcortical 
(SCN), frontoparietal (FPN), dorsal attention (DAN), and ventral attention (VAN) networks. Our results 
demonstrated increased functional connectivity in the FPN networks in the LTLE and the RTLE cohorts compared 
to HC. Increased FC has been observed between DMN, FPN, DAN, VAN, and VSN in the LTLE cohort and between 
the DMN and FPN networks in the RTLE cohort. 
Conclusion: The proposed method has obtained promising results within a range of SNR and properly overlapped 
with the well-known functional networks using the Hausdorff distance. The consistent alteration patterns in 
within-and between-network FC for LTLE and RTLE patient cohorts would reflect the reliability of identification 
of large-scale brain networks in patients with mTLE. Different pattern of alterations in LTLE and RTLE compare 
with HC groups my be usefull for laterality porpose.   

1. Introduction 

Mesial temporal lobe epilepsy (mTLE) is the most common type of 

drug-resistant focal epilepsy that involves the internal structures of the 
temporal lobe [1,2]. Recent research shows that mTLE not only affects 
the temporal lobe regions, but also manifests structural effects 
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extratemporally [3–5]. MRI volumetric analysis such as voxel-based 
morphometric (VBM) shows atrophy in the hippocampus as well as re-
gions beyond the hippocampus within ipsilateral temporal lobe [6], 
thalamus [7–9], and cingulate cortex [10–12]. These structural abnor-
malities cause asymmetric features on the ipsilateral side to the 
epileptogenic zone [5,13,14]. Besides structural alterations, extensive 
and widespread functional and cognitive impairments by mTLE are 
evidenced by neuropsychological evaluations and neuroimaging ap-
proaches in temporal and extra-temporal brain networks known as 
resting-state network (RSN) and support the theory that mTLE is an 
extensive network disorder [15–18]. Different alterations by mTLE are 
reported including default mode (DMN), sensorimotor (SMN), subcor-
tical (SCN), limbic (LIN), visual (VSN), frontoparietal (FPN), dorsal 
attention (DAN), and ventral attention (VAN) networks [17,19–21]. 
These networks involve various areas of the brain that are not neces-
sarily spatially close, and exhibit an extremely similar pattern of blood 
oxygenation level-dependent (BOLD) signal identified by resting-state 
functional connectivity (RSFC) [22]. The BOLD signals from brain re-
gions might be functionally correlated, yet are evidenced to be spatially 
structured reflecting the structural architecture and internally homog-
enous and cytoarchitectonically organized structure of the cortical areas 
in the human brain [23–28]. In addition to the symmetrical pattern of 
the brain structures, previous research on RSFC demonstrates the sym-
metry of the brain functional networks for more than 95% in mean 
resting-state connectivity [29], and also equal distribution of ICA com-
ponents in the two brain hemispheres [24,30,31]. Therefore, the sym-
metrical properties can be accounted for to identify brain functional 
networks. Considering the fact that the brain networks often function 
and structure interhemispherically symmetric in healthy brains and 
asymmetric in neurological diseases such as mTLE, we hypothesize that 
the use of spatial information along with the temporal correlations can 
better identify the brain networks and model and describe the alteration 
in mTLE [32,33]. 

Several methods have been applied to study functional networks 
utilizing resting-state fMRI (rsfMRI) data. Data-driven methods are 
among the most powerful and flexible approaches that can detect 
spatially and temporally correlated patterns without enforcing the 
observed data to fit into any specific model. Principal component 
analysis (PCA) [34,35], independent component analysis (ICA) [36,37], 
and data clustering methods [38–43] have been generally used as 
data-driven methods for fMRI analysis. The main clustering techniques 
are K-means [38,44], fuzzy clustering [39], hierarchical clustering [40]; 
and self-organizing maps (SOMs) [41–43]. Yet, each of these techniques 
has its own drawbacks. In the PCA technique, the components are 
assumed to be orthogonal, thus, only the second-order statistics (vari-
ance) are used. To describe the heterogeneously distributed fMRI data-
set, the second-order statistics do not seem to be adequate and the 
assumption of orthogonality for the components may not be appropriate 
for fMRI data [45]. Using higher-order statistics (entropy-based or 
non-Gaussianity assumption), ICA may be able to separate independent 
components of the data. The strong assumption taken in this method is 
about the independence between spatial or temporal components which 
may lead to invalid decomposition [46,47]. In addition, no priority is 
designated to independent components and often they are difficult to 
interpret or assign to the effect of interest. The K-means clustering al-
gorithm, on the other hand, constrains the clusters to be spherical and 
symmetrical, which confines its application in the real fMRI domain 
[38]. In the fuzzy clustering method, the limitation comes from the fact 
that the results strongly depend on assignment of initial cluster centers 
and the fuzzy factor [48]. The hierarchical clustering method eliminates 
some of the limitations of K-mean and fuzzy clustering algorithms, 
however, the inability to determine a specific threshold for integration 
or division, and perhaps the computational complexity are among their 
main disadvantages [38]. 

The SOM is an unsupervised neural network that provides nonlinear 
projection from a high-dimensional data on a 1D or 2D map, which is 

shown to overcomes the abovementioned limitations. The topology- 
preserving property of SOM reveals basic data structures [49,50] and 
has successfully been used in task fMRIas well as in rsfMRI data analysis 
[33,42]. 

Besides the choice of technique for extracting RSNs, another 
important decision to make is whether an individual- or a group-wise 
analysis has to be carried out. Even though the individual analysis 
may be useful for some purposes including individual-level precision, 
such analysis is limited by the quite low signal-to-noise ratio of fMRI and 
small effect size. Therefore, network analysis at the group level is more 
common, which is a complex task and, in some cases, requires human 
interference in the selection of algorithm parameters such as the number 
of networks to analyze. 

In this paper, we took the properties of the brain being spatially 
structured and interhemispherical symmetric into account to extract 
functional RSNs using AAl atlas nodes. We proposed an integrated 
spatiotemporal clustering approach using self-organizing maps as a 
data-driven technique for identifying brain functional networks. Using a 
normal heathy group, we summarized individual cluster results to group 
representative networks. We constructed a group analysis approach for 
selecting consistently functionally connected RSNs using a restricted 
Frechet mean approach, that minimizes a sum of squared distances from 
all the elements in the defined space. In our framework these elements 
are represented with each SOM [51]. After performing the spatiotem-
poral SOM clustering method on individual subjects, we customized the 
restricted Frechet mean method to be used for group analysis of func-
tional networks in normal subjects. We have validated our proposed 
method using a syntactically simulated data. 

We used the obtained functional networks to investigate the func-
tional connectivity abnormalities in patients with left and right mTLE 
(noted by LTLE and R LTLE, respectively). To this end, we proposed and 
followed a three-step approach. In the first step, the functional networks 
in healthy individuals are estimated using the proposed spatiotemporal 
SOM clustering algorithm. In the second step, we used the SOM 
restricted Frechet mean method to identify group-wise functional net-
works. In the third step, using networks obtained from normal in-
dividuals, we examined the differences within and between-network 
connectivity in the functional networks for the mTLE patients. 

2. Materials and methods 

2.1. Subjects 

This study included 35 unilateral mTLE patients (21 LTLE and 14 
RTLE). The side of laterality was determined by team of neurologists, 
epileptologists, neuropsychologists, and the neurosurgeon in a multi- 
disciplinary presurgical decision-making session, based on descriptions 
and manifestation of seizure semiology, ictal EEG, ictal epileptogenic 
zone, and interictal–irritative zone, as well as MRI findings. The 

Table 1 
Patient characteristic.  

Characteristic HC LTLE RTLE P-Value 

LTLE 
vs. 
RTLE 

LTLE 
vs. 
HC 

RTLE 
vs. HC 

Sample size 11 21 14 –   
Sex (M/F) 5/6 10/11 8/6 0.73a 1.00a 0.69a 

Age (yr), 
mean ± STD 
[range] 

27.7 ±
4.2 
[17–36] 

31.9 ±
8.2 
[17–54] 

26.8 ±
6.2 
[17–36] 

0.06b 0.12b 0.72b 

Onset Age (yr), 
mean ± STD 
[range] 

– 10.8 ±
8.2 
[0.5–29] 

9.4 ± 9.4 
[0.5–28] 

0.63b – –  

a Fisher exact test. 
b Two-sample t-test. 
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characteristic information of the patients is given in Table .1. Patients 
with disabling cognitive impairment or other patients with other 
neurological diseases were excluded beforehand. Eleven healthy sub-
jects were also recruited as controls. All subjects in the control group 
were healthy and did not have any neurological or mental disorders at 
the time of the study. We asked all subjects to relax, close their eyes 
without sleeping, and think nothing in particular during MRI and fMRI 
scans. The research protocol was approved by the Institutional Review 
Board of Tehran University of Medical Sciences. 

2.2. Image acquisition 

MRI data were collected using a 64-channel phased-array head coil 
on a 3-T scanner (Siemens Prisma, Erlangen, Germany) with software 
version “Syngo MR E11” at the Iranian National Brain Mapping Labo-
ratory (NMBL). Anatomic images were acquired for clinical diagnosis 
using a standard protocol including transverse T1 weighted images 
using MPRAGE protocol with the following imaging parameter: TR =
1840 ms, TI = 900 ms, TE = 2.43 ms, flip angle = 8◦, matrix = 224 ×
224, in-plane resolution = 1.0× 1.0 mm2,slice thickness = 1.0 mm, pixel 
bandwidth = 250 Hz/pixel. The rsfMRI images were acquired using 
echo-planar imaging (EPI) protocol with 330 measurements and the 
imaging parameters: TR = 3000 ms, TE = 30 ms, flip angle = 90◦, 
acquisition matrix = 64 × 64, slice thickness = 2.4 mm, and total scan 
time = 16.5 min. All patients were asked to relax and keep their eyes 
closed and think nothing in particular during the rsfMRI scanning pro-
cess.The raw data or processed data in this study will be made available 
to access upon a reasonable request. 

2.3. Image preprocessing 

DPARSF 4.3 (http://rfmri.org/dpabi; [52]) was used for the pre-
processing of the rsfMRI data. For each subject, the first 10 time points 
were discarded. The remaining 320 volumes were first corrected for the 
time difference between slices and then realigned to the middle volume 
for head-motion correction. Skull stripping was performed for a proper 
registration of functional images to T1-weighted images. Head move-
ment was corrected using motion scrubbing. The resulting images were 
segmented into grey matter (GM), white matter (WM), and cerebrospi-
nal fluid (CSF), then mean BOLD signal was calculated from WM, CSF, 
and global signals (which is extracted from all voxels of the entire MRI 
volume) were regressed on the rsfMRI data. Using the normalization 
parameters estimated by the T1 structural image, the realigned func-
tional volumes (voxel size [3,3,3]) were spatially normalized to the 
Montreal Neurological Institute (MNI) space. Then using a Gaussian 
kernel (FWHM = 8 mm), the dataset was smoothed, linearly detrended, 
and temporally filtered (0.01–0.08 Hz) to decrease the effect of 
low-frequency drifts. Using Automated Anatomical Labeling (AAL) atlas 
[53], the volumes were segmented into 90 anatomical regions of interest 
(ROIs) to extract the ROIs time series. The mean time series of all voxels 
within the ROIs were used for the connectivity analysis. 

To further minimize the effects of head motion, it was estimated with 
Friston 24-parameter correction [52] using autoregressive models of 
motion by DPABI toolbox, which incorporates 12 head motion param-
eters for the last two time points (each of six parameters) and the 12 
corresponding squared items. It also provides voxel-specific head mo-
tion calculation and correction at the individual level. We used 
frame-wise displacement (FD) measure for scrubbing at the quality 
control step [52]. This measure calculates the sum of the absolute values 
of the differentiated realignment estimates at every timepoint [54]. We 
removed volumes with FD > 0.3 mm to control head motion. 

2.4. Simulations of synthetic data 

For validation of the proposed spatiotemporal self-organizing maps 

(STSOM) clustering approach and group-wise analysis, we used MAT-
LAB toolbox, SimTB framework (http://mialab.mrn.org/software/sim 
tb/; [55]) to simulate fMRI data assuming dynamic neural connectiv-
ity. Ten virtual themes have been used to form the group. Because we 
used the AAL atlas for real data, we also used available reported AAL 
atlas-based RSNs for simulate synthetic data. these RSNs including; 
DMN, ATN, VSN, and SMN [56,57]. For each virtual subject, time series 
(TS) associated with any of 90 anatomical AAL nodes were generated by 
applying a random variation on a 4 base template related to 4 different 
networks (320 time points; TR = 3s; similar to the actual fMRI acqui-
sition parameters). 

Each of 90 TSs was located to one of the 4 networks as follows; DMN 
(34 TS), ATN (24 TS), VSN (16 TS), and SMN(16 TS). After generation of 
TCs for all subjects, we added different levels of Gaussian noise, n(t), to 
the time series to evaluate our proposed method as follow: 

f (t) = S(t) + λn(t) (1)  

where S(t) is the simulated time series with the mean and the standard 
deviation of ±0.06 and 0.66–0.8, respectively. n(t) is a white Gaussian 
noise with the mean of 0 and standard deviation of 1 and λ, is a coef-
ficient that controls the level of Gaussian noise. It was tested at levels of 
λ = 0.2, 0.3, and 0.5, [27], representing high, medium, and low SNR, 
respectively. 

2.5. Construction of group networks 

Using the AAL atlas [53], 90 ROI averaged time series were extrac-
ted, and using Pearson’s correlation, a 90 × 90 correlation matrix was 
calculated. Fisher z-transformation [58] was applied to FC matrices to 
improve normality for group-level comparisons. In the group clustering 
stage, a normal healthy group was used. The resulting cluster map 
represented the underlying networks among groups of individuals. 
Group clustering consisted of 3 steps: clustering each subject by STSOM 
method to obtain an individual network (step 1, Fig. 1A), applying the 
restricted Frechet mean method to find the mean SOM among the group 
(step 2, Fig. 1B), and matching the labels obtained in each subject using 
the mean SOM and obtain group-level networks (step 3, Fig. 1C). 

2.5.1. Step.1: computation of individual-subject networks using STSOM 
SOM is a two-layer artificial neural network that maps high- 

dimensional input data into a set of nodes arranged in a low- 
dimensional (often 2D) lattice [49]. Each SOM node has a weight vec-
tor with dimensions similar to the input vector. The SOM output is a 
regular two-dimensional map consisting of nodes called neurons, each 
connected to its neighbors. The SOM algorithm consists of a series of 
training steps that use unsupervised learning to adjust the weight vec-
tors of the nodes to input vectors. At the end of the training process, a 
trained SOM represents the data structure in a 2D lattice [49]. In our 
application, we used SOM method to detect nodes’ topology in brain 
AAL atlas and identified functional networks as various subsets of nodes 
with a small within-distance and a large between-distance with other 
subsets. 

For each subject, a 90 × 90 matrix X (related to 90 AAL ROIs) con-
taining Fisher-transformed correlation coefficients was considered as 
the input to the SOM. For eachmatrix element Xn,i, n = 1, …,90 corre-
sponds to a data point and i = 1, …, 90 corresponds to a connectivity 
value (Fig. 1A). For STSOM clustering analysis, we proposed to feed the 
SOM with a spatiotemporal feature matrix consist of correlation co-
efficients as temporal attributes; and MNI coordinates of the nodes in 
AAL atlas as spatial attributes. 

There is a consensus among the neuroscientists that the brain net-
works function interhemispherically symmetric in general [23,24,29, 
59]. We imposed this property as a constraint by considering the abso-
lute values of the x-components in AAL coordinates (originally positive 
on the right and negative on the left brain hemispheres). Considering 
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MNI location of nodes as Sn,k (n = 1, …,90; k = 1, 2 and 3, defining x, y, 
and z coordinates of the related node), a new input vector for each node 
can be represented as follow: 

Y ={X|α.S} (2)  

where α is a regularization parameter for controlling the effect of the 
spatial term. As Fig. 1A illustrates, we applied the input vector Y con-
taining spatial as well as temporal properties to the SOM for extracting 
functional networks. Therefore, the SOM further weights the voxels with 
similar temporal correlations that are closer together in the MNI space. 

Each input node n is connected to each SOM neuron represented by j 
(j = 1,..,p: the total number of neurons) (Fig. 1A). The network weight, 
Wnj(t) (randomly initialized), adaptively changes at each iteration t, 
until convergence is reached when the distance between the input data 
Yn and the weights Wnj(t) is minimized using equation (3). 

dnj =
∑m

j=1

(
Yn − Wj(t)

)2 (3)  

where m is the number of neurons. The neuron with a minimum distance 
from an input vector (with minimum dnj(t)) is chosen as the winner and 
named the best matching unit (BMU). These neurons have the strongest 
response in the next phase. In the learning phase, the BMU and its 
neighboring neurons are drawn to the input vector as: 

Wnj(t+ 1)=Wnj(t) + η(t)
(
Yn − Wj(t)

)
Zj (4)  

where η(t) denotes the learning rate and Zj is a neighborhood function. 
Here, we use a standard Gaussian kernel as the neighborhood function, 
which is commonly used to account for the effect of its neighbor values 
on each unit. 

Zj(t) = exp
(
− rd − rc

2 / 2σ(t)
)

(5)  

where rd and rc are the coordinates of the neighboring and closest ex-
emplars, respectively, and σ(t) controls the width of Gaussian function, 

initially set to a large set of neurons and decreases to just one neuron in 
the final step. The learning rate is usually set larger in the early stages of 
the learning process and decreases as convergence is achieved. We used 
100 iterations for rough-tuning (large neighborhood radius) and 1000 
iterations for fine-tuning (neighborhood radius is one neuron) phases. 

One of the critical parameters in SOM is the number of neurons or 
map size. A too-large choice leads to too-detailed patterns; while a too- 
small map leads to too-general patterns. In both cases, natural clusters of 
data cannot be adequately defined. The optimal number of neurons (the 
map size) is calculated as 5

̅̅̅
n

√
, where n is the number of data points 

[60]. In our study, this optimal map size was set to 45. 
Since there is not any rigid boundary between the neurons that 

define the clusters by SOM, the subset of neurons that are related to the 
set of clusters cannot be determined [61]. We used the k-means method 
for clustering SOM results proven to be efficient in such applications [62, 
63]. There are several methods used for evaluating clusters in previous 
studies, such as Davies–Bouldin index (DBI) [64], Silhouette [65] and 
Elbow [66]. We also used the DBI, as a metric for evaluating the number 
of clusters. It is indeed a well-known clustering quality measure calcu-
lated by averaging the maximal similarity between each cluster and all 
other clusters. A higher clustering performance is associated with a 
smaller index. The DBI method is the most common method for deter-
mining the number of clusters in SOM-based analyzes [67–70] which is 
used by the SOM toolbox to determine the appropriate number of 
clusters. For each group, we evaluated the number of clusters as K (from 
1 to 10) and we applied DBI for each subject. We considered the mean 
value of all subjects in the group as a group evaluation. For stability of 
the clustering result, we applied k-means 150 times with different 
initialization to detect the best clustering by the minimum within-class 
distance. By which, k-means clustering was used to label the SOM 
nodes in our application. The mean Time series of the nodes with a same 
label were considered for group analysis (SOM Toolbox 2.0; free 
download at http://www.cis.hut.fi/projects/somtoolbox/for MATLAB). 

Fig. 1. STSOM group-vise functional network processing. A: Clustering each subject using STSOM method by combining correlation matrix and MNI coordinates of 
each region and obtaining an individual network. The k-means method clusters SOM results. B: Applying restricted Frechet mean method finds the mean SOM. C: 
Matching the mean cluster labels of each subject with the resulted mean SOMs. 
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2.5.2. Step.2: identification of mean SOM using restricted Frechet mean 
After applying the clustering method for individual-level networks 

analysis, the clustering showed no constant label numbers across the 
subjects. Hence, we performed a two-step approach for the detection of 
group cluster networks. The first step was to define the reference SOM 
map using a restricted Frechet mean method [51] in each group 
(Fig. 1B); and the second step was to match the cluster labels for indi-
vidual subjects (Fig. 1C). 

Since in our proposed method the data and clusters are represented 
by SOM networks, we used the method presented in Ref. [51], which is 
based on the Frechet mean method, where the mean SOM is determined 
and the other clusters are matched with the mean SOM clusters. SOM 
Frechet mean is a method to determine the reference SOM in a group of 
SOMs according to the SOM space measurement criterion [51]. After 
applying STSOM method to the individual subject, each dataset was 
summarized as an array of SOM map unites, Mq (with q = 1, …, v) 
corresponding to the SOM of the qth subject and total v subject. Given 
such a sample of SOMs, M can then define the restricted Frechet mean: 

M = argmin
M′

∈Λ

∑vj

q=1
d
(
Mq,M

′)2 (6)  

where Λ denotes the sampled v SOMs, such that Λ = {M1, ...,Mv} and d is 
the distance function as the sum of minimum distance (SMD). We used 
temporal SMD (T-SMD) to deal with the problem of comparing multiple 
SOMs [71]. Given two sets of SOMs denoted by Mx and My, the SMD can 
be computed as follow. 

d
(
Mx,My

)
=

1
2V

(
∑

Wx∈Mx

de
(
Wx,My

)
+
∑

Wy∈My

de
(
Wy,Mx

)
)

(7)  

where V is the total number of input vectors, de is the Euclidean dis-
tance. Wx and Wy are the weight vectors of every neuron of Mx and My, 
respectively. After specifying the reference SOM, the clusters of indi-
vidual subjects can be arranged. 

2.5.3. Step.3: matching individual subject clusters to find group networks 
After obtaining the reference SOM, we used the mean of the neurons 

in each cluster as a representative to match the clusters to reduce the 
effect of outlier data and also the computational complexity. To match 
clusters of each individual subject, we considered all possible cluster 
matchings between cluster means-using all possible cluster permuta-
tions- and calculate the overall similarity value as the sum of similarity 
values for all matched clusters. The overall best match was the permu-
tation maximizing the global similarity based on the Euclidean distance 
between the two clusters. 

2.6. Labeling the functional networks 

Networks were assigned by calculating the Hausdorff distance be-
tween each detected network and the known major functional brain 
networks computed for a large number of subjects [23,24,59]. The 
Hausdorff distance is a dissimilarity measure that represents how far two 
regions are from each other and is defined as follow: 

HD=max(h(A,B), h(B,A)) (8)  

h(A,B)=max
a∈A

{

min
b∈B

{d(a, b)}
}

(9)  

where A and B are two sample sets and d (a, b) denotes the Euclidean 
distance between a and b as points of A and B, respectively. The Haus-
dorff distance is more sensitive to outliers than other methods like Dice’s 
coefficient and Jaccard distance in measuring the closeness of two sets. 
It also is not sensitive to the size of clusters which makes it suitable for 
comparison between brain networks. We also used it for evaluating our 

proposed results in the syntactic data set. 

2.7. Network quantification 

After obtaining the functional networks, the ROIs of each network 
were put together and the connectivity matrix was calculated using the 
Pearson correlation between each node time series. The Fisher Z trans-
form [58] was then applied to the correlation matrix. The average FC of 
the within and between-network connectivity for each network were 
computed and then these measures were compared across three HC, 
LTLE and RTLE groups using one-way ANOVA. Bonferroni correction 
(with 3 tests) was applied to adjust for multiple comparisons. 

To investigate the generalizability of the obtained functional 
network to other controls the control subjects were divided into two 
groups (5 and 6) with a surrogate and a samples t-test was used to 
compare the two groups. Samples t-test is a suitable method of testing 
hypotheses about the mean of a small sample population when the 
population standard deviation is unknown. 

2.8. Identification of regularization parameter α 

As mentioned in Section 2.5.1, we considered each row of the Fisher- 
transformed connectivity matrix for each subject as a data point. As 
shown in Fig. 1, for each node, the MNI coordinates of the corresponding 
node were added as three new spatial features to the 90 functional 
features (90 connectivity values corresponding to each node). We used a 
homogeneity measure to evaluate the effect of α parameter on the 
simulated and real data. A functional network should not only be 
distinct from other networks, it also should maintain a uniform and 
consistent connection pattern across its nodes. In other words, the 
connections of a functional network should be homogeneous within it. 
Therefore, a degree of homogeneity for the created networks can be 
considered as a quantitative criterion for the functionality of the net-
works. We used this as a ground to investigate the effect of the alpha 
parameter in determining the optimal networks [26,27]. The homoge-
neity of the clustering was assessed using the following technique: For 
each network, we computed the average z-transformed correlations 
within a network. Then, these values were averaged across all resulted 
networks for each subject. Finally, the resulted values were averaged 
across all subjects [26]. 

We also used a homogeneity measure to compare the performance of 
our proposed network with two standard functional networks, namely 
the Power and the Yeo networks. Since the degree of homogeneity is 
related to the network size, any assessment of the homogeneity in any 
network should be through a comparison to a null model - to decide 
whether it is more homogeneous than expectedly random networks of a 
similar size [72]. Therefore, we evaluated the degree of homogeneity for 
each network under the study with many random networks of the same 
size through the random placement of nodes in each network. 

3. Results 

3.1. Head motion correction 

All the subjects were checked for head motion; the mean displace-
ment was <3 mm and the mean rotation was <3◦. There was no sig-
nificant difference in mean head motion between groups based on the 
subject-averaged framewise displacement (FD) measurement [11]: HC 
= 0.112 ± 0.033 mm; LTLE = 0.124 ± 0.040 mm; RTLE = 0.128 ±
0.047 mm; ANOVA test: F (2, 46) = 1.28; P = 0.28. 

3.2. Result of synthetic data 

STSOM clustering algorithm and the restricted Frechet mean 
methods were applied to the synthetic data. Fig. 2A shows the surface 
map of the DBI for different values of α from 0 to 1. As Fig. 2B shows, for 
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Fig. 2. A: Surface map of the DBI for different values of α from 0 to 1. B: DBI for different values of α from 0 to 0.08. C: Homogeneity measures for different values of 
α between 0 and 0.2. X and y axes show the cluster number and α values from 0 to 1, respectively. 

Fig. 3. Effect of regularization parameter α on the resulted networks for simulated fMRI data, A: simulated networks, B: α = 0; related to no reqularization, C: α =
0.05, related to optimal a decent reqularization based on homogeneity measures analysis and D: α > 0.1; related to high regularization of the spatial parameter. 
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small values of α (α < 0.1), an appropriate number of clusters is achieved 
4. Fig. 2C shows the result of homogeneity measures for different values 
of α between 0 and 0.2. This figure shows the homogeneity values are 
maximum for α values of 0.04, 0.05, and 0.06. we tested these values 
and no differences were achieved in the resulted networks. Therefore, 
we chose α = 0.05 for further analyses. 

To investigate the effect of regularization parameter α on the resulted 
networks, the netwroks were obtained for α values of 0 (no requlariza-
tion), 0.05 (optimal reqularization based on homogeneity measures 
analysis) and α > 0.1, (a high regularization of the spatial parameter) 
(Fig. 3). As illustrated by Fig. 3B the VSN network is not delineated 
correctly and the FPN network has overlapping with visual area. Fig. 3C, 
demonstrates that with the optimal value of the α parameter, all 4 net-
works are correctly delineated. As Fig. 3D shows, as the effect of a high 
spatial parameter, each network is concentrated in one area. For 
example, in the frontal region, only the DMN network is identified. In 
addition, the motor network has extended to parietal regions. 

Fig. 4 shows a parcellation using STSOM compared with the con-
ventional SOM. The difference is exploiting the restricted Frechet mean 
method for group analysis (named SOM1) and applying the conven-
tional SOM on an averaged connectivity matrix (named SOM2) at 
different SNR values. Fig. 5 also shows the Hausdorff distance between 
each pair of resulted networks by three mentioned methods and pre-
defined simulated networks for a different level of SNR. 

As Fig. 4 shows for λ = 0.2, STSOM and SOM1 methods performed 
well for quite high values of SNR but missed clustering was observed in 
the SOM2 method in the visual and attention networks. The Hausdorff 
distance reached lower values in STSOM and SOM1 methods and larger 
values in the SOM2 method (regarding misidentifying of visual and 
attention networks) (Fig. 5A). As the noise level was amplified with λ =
0.3, the SOM2 failed to detect networks and the SOM1 also started to 
fail. However, Fig. 4 shows that the STSOM approach was able to 
correctly identify all four regions. The Hausdorff distance also reached 
low values in STSOM and large values in SOM1 (related to visual 
network) and SOM2 (related to visual and attention networks) methods 
(Fig. 5B). At the lowest SNR level (λ = 0.5), the STSOM method was still 
able to parcellate all 4 regions, while the conventional SOM with 
restricted Frechet mean and also simple averaging failed to define four 
functional networks correctly. As shown in Fig. 4C STSOM method 
resulted in a low Hausdorff distance. Both SOM1 and especially SOM2 
show a large Hausdorff distance for all networks. 

3.3. Resting-state functional networks 

In the previous section, the comparison of the proposed spatiotem-
poral clustering algorithm STSOM and the conventional SOM ap-
proaches demonstrated that the STSOM was capable to produce more 
accurate and more robust parcellation results compared with SOM1 and 

Fig. 4. Comparing the resulted networks by proposed STSOM method A: Gold standard simulated networks. B: Result of proposed STSOM method, conventional 
SOM using restricted Frechet mean method (SOM1), and without restricted Frechet mean using a simple averaging connectivity matrix (SOM2). λ represents the level 
of Gaussian noise. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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SOM2 methods for a range of SNR values. 
The number of clusters was specified using the DBI. A surface map for 

α values between 0 and 1 is generated and shown in Fig. 6. As can be 
seen in this figure, for 8 clusters, the value of DBI is minimal for all α 
values as well as in all three HC, LTLE and RTLE groups. This means that 
the 8 networks seem to be optimal. Fig. 6B represented homogeneity 
measures for different α values. As this figure shows, the homogeneity 
measures were almost maximum for 0.04, 0.05 and 0.06. We tested 
these 3 values and the resulting networks did not differ, so we set α 
parameter to 0.05. 

Fig. 7 shows the obtained networks for α values of 0 and 0.05, for 8 
networks. Note that for α = 0 (without spatial and hemisphere symmetry 
effect), the resulting networks are neither regular nor symmetric, but α 
= 0.05 generated almost symmetric networks. 

The overlap ratio concerning the Hausdorff distance between each 
HC individual’s consensus network and previously defined reference 
networks is shown in Tables S1–S3. As Tables S1–S3 shows networks 1 
and 2 had a minimum Hausdorff distance with DMN in all three atlases. 
Considering this criterion and also the visual comparison of networks 
with three standard functional atlases, we combined networks 1 and 2 to 
define the default mode network (DMN). Networks 3 and 4 were the 
shortest distance from SMN and VSN, respectively, in all 3 atlases, 
therefore they were also considered as SMN and VSN. The results of the 
brain cortical visualization also validated this specification. Network 6 

had the shortest distance to SCN in the AAL based atlas [43], to DMN in 
Yeo atlas, and to DMN and SCN networks in Power atlases. Since we used 
AAL atlas, we considered this network as SCN. The results of the visu-
alization networks on the brain cortex also validated this dedication. 
The remaining 5,7 and 8 networks were considered as DAN, FPN, and 
VAN, respectively, according to the Hausdorff distance and visual in-
spection on the cortex. The results of applying our proposed method 
revealed 8 networks in the HC subjects that are described with different 
colors on the cortical surface shown in Fig. 8A. The final 7 data-driven 
functional networks on the cortical surface are shown in Fig. 8. B, 
consisting DMN, SMN, VSN, SCN, FPN, DAN, VAN. We also visualized 
Yeo 2011 and Power networks that were overlayed on AAL atlas for 
comparison with our proposed networks in Fig. 9. 

3.4. Homogeneity measures for different methods and null model 

Fig. 10 represents the homogeneity measures calculated for our 
STSOM proposed method and also for Power and Yeo methods. As this 
figure shows, the STSOM method achieved a larger homogeneity value 
compared to both Power and Yeo methods. In addition, all three 
methods exhibited a larger homogeneity compared to their corre-
sponding null model. 

Fig. 5. The Hausdorff distance between each pair of resulted networks and predefined simulated networks. Proposed STSOM method with conventional SOM using 
restricted Frechet mean method (SOM1), without restricted Frechet mean using a simple averaging connectivity matrix (SOM2). λ represents the level of 
Gaussian noise. 
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3.5. Brain network connectivity alterations in MTLE 

For evaluation of the reproducibility of the proposed method on 
different datasets, we compared the 5 control groups to another 6 con-
trol groups. There were no significant differences detected between 
these groups (samples t-test, p > 0.05) on average FC of the within- 
network and between-network connectivity. The averaged functional 

connectivity matrix for each of HC, LTLE, and RTLE groups are shown in 
Fig. 11A and the averaged within and between network connectivity 
matrix is shown in Fig. 11. B. 

Significantly increased within-network FC in FPN and DMN (Bon-
ferroni corrected p < 0.05) were seen in LTLE group compared to HC 
group (Fig. 12). Both LTLE vs. RTLE and RTLE vs. HC groups showed no 
significant within-network FC difference in any of the RSNs. A 

Fig. 6. A: Surface map of DBI for different values of α parameter for normal group (HC), left-TLE group (LTLE) and right-TLE group (RTLE). x axis shows the cluster 
number and y axis shows α values from 0 to 1. B: Homogeneity measures for different α values between 0 and 0.2. 

Fig. 7. Visualization of the data-driven brain networks by the proposed method. A: 8 resulted networks using α = 0 (without spatial and hemispheric symmetry 
properties) B: 8 resulted networks using α = 0.05. 
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comparison of between-network FC with the HC group showed that both 
LTLE and RTLE cohorts showed increased FC between “DMN, FPN”. 
Moreover, LTLE patients showed increased FC between “DMN, VSN”, 
“DMN, SCN”, “DMN, FPN”, “DMN, DAN”, “FPN, VSN”, “FPN, SCN”, 
“FPN, DAN”, and “FPN, VAN”. Finally, no significant difference of FC 
between any of RSNs was detected between the LTLE and RTLE patients 
(Fig. 12). 

To make a comparison between our proposed method with other 
standard methods, we assigned 90 AAL ROIs to RSNs reported by Yeo 
et al. [12] and Power et al. [11]. Then, we compared alteration between 
mTLE groups and HC group using the RSNs. 

For Yeo et al. networks, as shown in Fig. 13, within-network FC 
increased in LIN and DAN in LTLE group compared to HC. None of the 
functional networks showed an increase in within-network FC in RTLE 
group compared to HC or LTLE cohort. Between-network FC increased 
between “DMN, FPN”, “DMN, LIN”, “DMN, DAN”, “DMN, VSN”, and 
“DAN, LIN” in LTLE cohort compared to HC. Between-network FC 

increased between “DMN, LIN” in RTLE compared to HC (Bonferroni 
corrected p < 0.05) (Fig. 13). 

Using Power networks, we repeated the above mentioned compari-
sons. Within-network FC increased in DMN and DAN for LTLE cohort 
compared to HC. None of the functional networks showed an increase in 
within-network FC in RTLE group compared to HC or LTLE cohort. 
Between-network FC was increased between “DAN, FPN”, “DAN, VSN”, 
“DAN, SMN”, “DAN, SHN” and “FPN, SAN”, “FPN, VSN”, “FPN, DMN”, 
and also “DMN, VSN” in LTLE compared to HC; and between “DAN, 
SHN” and “SAN, FPN” in RTLE compared to HC (Bonferroni corrected p 
< 0.05) (Fig. 13). Finally, no significant difference of FC between any of 
RSNs was detected between the LTLE and RTLE patients using either of 
Yeo and Power networks (Bonferroni corrected p < 0.05). 

4. Discussion 

In this study, accounting for spatial structure and hemispheric 

Fig. 8. Visualization of the data-driven brain networks by the proposed method. A: the 8 raw data-driven networks B: final 7 labeled networks. (1) Default-mode 
Network (DMN), (2) Sensorimotor Network (SMN), (3) Visual Network (VSN), (4) Subcortical Network (SCN), (5) Frontoparietal Network (FPN), (6) Dorsal attention 
Network (DAN), (7) Ventral attention Network (VAN). 

Fig. 9. Visualization of Yeo 2011 and Power 2011 resting-state networks overlaid on AAL atlas (1) Default-mode Network (DMN), (2) Sensorimotor Network (SMN), 
(3) Visual Network (VSN), (4) Subcortical Network (SCN), (5) Frontoparietal Network (FPN), (6) Dorsal attention Network (DAN), (7) Ventral attention Network 
(VAN), (8) Limbic Network (LIN), (9) Auditory Network (AUN), (10) Memory retrieval Network (MRN), (11) Somatomotor Hand (SHN), (12) Cingulo-opercular Task 
Control (CON). 
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symmetry of the brain function, we proposed a clustering approach for 
analyzing the resting-state fMRI using a novel data-driven framework of 
spatiotemporal self-organizing maps and a group-level analyzing 
method for identifying the functional brain networks and their charac-
terization in left and right mTLE. Specifically, it is evidenced that the 
brain is functionally correlated and spatially homogeneity structured. 
The time courses are usually noisy and contain a small set of samples 
compared to the spatial maps. The small sample size and inherent noise 
reduce the accuracy of computed statistics. In contrast, we integrated 
spatial and temporal information using a self-organizing map for 
detecting main brain networks. Our novel group-level analysis based on 
self-organizing maps and the restricted Frechet mean method also 
demonstrated homogeneity of the identified networks. We investigated 
the functional networks in left and right mTLE and healthy control co-
horts and compared them with the corresponding Yeo and Power 
functional networks. The results indicated that mTLE is characterized by 
a significant reorganization of frontoparietal, default-mode, and dorsal 
attention functional networks in mTLE. Moreover, the pattern of the 
altered network connectivity in the left and right mTLE patients signif-
icantly differed from the healthy controls. 

This study is a pioneering resting-state study that integrats spatial 
information of the regions of interest into the temporal signal properties, 
with the assumption of hemispheric symmetry in brain functions, and 
exploits an SOM clustering approach to investigate the whole-brain 
RSNs. Compared with other methods using clustering techniques for 
identification of functional networks [39,40,44], applying spatial in-
formation would increase the homogeneity of identified networks and 
prevent the effect of noise and outliers on clustering. Spatial information 
was previously investigated in an ICA analysis [32], in which the strong 
assumption of independence of the components may deteriorate its 
ability to detect functional networks in real applications [46,73]. 

One of our aims was to obtain brain functional networks in AAL Atlas 
that have not been extracted before. Specifically, in Power (2011) study 
[23], as one of the most common functional networks in resting state 
analysis, the application of a graph-based method on AAL atlas does not 
extract the DAN, which is now well defined using our proposed method. 

Another advantage of the proposed method compared to other brain 
functional atlases such as Power and Yeo networks, is the use of the 
AAL90 atlas to determine the brain functional networks. The AAL atlas is 
one of the most widely used atlases in resting-state fMRI analysis. 
However, there has been no report of using spatial information based on 
the AAL atlas to extract brain functional networks. Moreover,a node- 
based approach for analysis of the brain networks has advantages over 
voxel-based approaches, namely: reducing the effect of noise on func-
tional time series, the computational burden, and the number of pa-
rameters to be estimated [27]. 

Exploiting regularization in extracting functional networks can 
ascertain the hemispheric symmetry. Recent studies reported more than 
95% symmetric hemispheres in mean resting-state connectivity [29]. 
Only small areas like language and hand preference have shown asym-
metry functional patterns [29,74,75]. 

The language and memory networks are within the most important 
networks affected by temporal lobe epilepsy, yet they manifest inter-
hemispherically asymmetric properties. However, in one hand, the 
language and memory networks are not among the main large-scale 
brain networks [23,24] and identifying them requires a secondary 
analysis as they overlap with other large-scale networks such as FPN and 
DMN [76–78]. On the other hand, we enforced network symmetry by 
exposing a constraint on MNI coordinates of 90 nodes of AAL atlas in our 
proposed method, not on asymmetric properties on the large-scale 
networks. 

Moreover, since the data of healthy people have been used in stan-
dard methods to extract functional networks [23,24,26,27], it seems 
acceptable to assume symmetric behaviors of the functions implemented 
in brain hemispheres. However, this assumption is only considered for 
spatial features (MNI coordinates) that are added to functional con-
nectivity features, and the functional features are preserved to demon-
strate potential functional laterality in some areas. 

Different values of the regularization parameter α can affect the 
networks identified in the simulated as well as real fMRI data. The re-
sults showed that the spatial information can extract the correct and 
symmetric functional networks. When there is no spatial parameter ef-
fect (α = 0), some networks (like the VSN and ATN in simulated data) are 
not determined correctly, and some resulted networks are not sym-
metric. Applying the homogeneity measure for evaluation of regulari-
zation parameter α showed that the range of 0.04–0.06 would be 
optimal for both syntactic and real fMRI data. Since the value of func-
tional features for each node is approximately limited between − 2 and 2 
(due to Fisher transform) and also the MNI coordinates in the AAL atlas 
adopt the values in the range of − 85 to 70, to match the weight of spatial 
and functional properties, the regularization parameter should be small 
and in and about 0.05 Furthermore, a small value of α would guarantee 
to preserve the functional nature of the networks and probable inherent 
laterality in some functional networks. 

To compare different network generating methods, since the ho-
mogeneity measure depends on the number and the size of networks, 
and smaller networks are inherently more homogeneous [27]. There-
fore, comparing the degree of homogeneity alone may not show the 
superiority of a method, and the comparison should be made for each 
method with its null model to reflect the performance quality. We 
demonstrated that our method is more homogeneous than the random 
size and shape match null model, and also performs superior relative to 
its null model compared to Power and Yeo networks being overlaid on 
AAL atlas. 

Due to the variabilities between atlases in the number and location of 
regions and also the difference between the average bold signals of the 
network regions, utilizing each atlas may lead to variable brain 

Fig. 10. Homogeneity measures calculated for our proposed STSOM method 
and Power and Yeo methods. Box plots represent homogeneity measures related 
to 1000 random generations of a null model. Red dots represent each method’s 
homogeneity measures. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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functional networks [23] with even difficult comparisons. The major 
existing functional networks are originally based on other atlases or 
voxel-based methods, and their adaptation to AAL regions require 
further analysis and sometimes not quite possible. In this study, we used 
the AAL atlas as one of the most common parcellation methods in 
resting-state fMRI studies to extract the functional networks. We will 
implement the proposed method on other atlases in future works. 

Despite a previous method [44], where the number of networks and 
the type of networks have been chosen based on prior information taken 
from previous works, our proposed method has this advantage that we 
made no assumption about the number of networks and the network 
type; and obtained them merely by adopting a data-driven approach. 

Another advantage of our proposed method compared with graph- 
based methods [23,24,79–81] that are commonly used to extract 

Fig. 11. Connectivity matrix of sorted node based on data-driven networks. A: The raw Fissher z transformed connectivity matrices for HC, Left –TLE, and right-TLE. 
B: The mean within and between connectivity matrices for the networks identified for HC, Left –TLE, and right-TLE. DMN: Default-mode Network, SMN: Sensori-
motor Network, VSN: Visual Network, SCN: Subcortical Network, FPN: Frontoparietal Network, DAN: Dorsal attention Network, VAN: Ventral attention Network. 
HC: Healthy control. 

Fig. 12. Statistical comparison of left-TLE vs. HC and right-TLE vs. HC (Bonferroni corrected p < 0.05). Red lines indicated significantly increased functional 
connectivity between networks. Lines between networks indicated between-connectivity and circle lines indicated within-connectivity networks. DMN: Default-Mode 
Network, SMN: Sensorimotor Network, VSN: Visual Network, SCN: Subcortical Network, FPN: Frontoparietal Network, DAN: Dorsal Attention Network, VAN: Ventral 
Attention Network. LTLE: Left-mTLE, RTLE: Right-mTLE, HC: Healthy control. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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functional networks, is that there is no need to select any specified 
thresholds. Previous network clustering methods depended on applying 
arbitrary thresholds to the connectivity matrix in which different 
thresholds can lead to different network clustering results. The network 
community detection highly depends on network density. If no 
threshold is applied then the network community analysis might not be 
practically feasible. Since STSOM uses full networks directly for clus-
tering and the connection size is automatically considered as a result of 
clustering, there is no need to applying any threshold and binarizing the 
networks. Thus, STSOM can eliminate the uncertainty resulting from the 
selection of threshold values and potentially provides a stronger and 
more consistent approach to research on brain networks. However, 
direct comparisons between STSOM and existing threshold-based tech-
niques are beyond the scope of this study. The only parameter that 
should be specified in our proposed method is the regularization 
parameter α. As shown by the results, the choice of the number of 
clusters does not depend on regularization parameter. Other clustering 
methods such as ICA, Hierarchical, N-Cut, in addition to the number of 
clusters, have other parameters that need to be specified. 

Previous methods have mainly used the average of the functional 
connection matrix in a group to obtain the group representative net-
works. According to the sensitivity of the BOLD signal to the noise level 
and the possibility of inaccuracy in individual data, the final result will 

be directly affected. In particular, we proposed a new and robust ma-
chine learning framework using restricted Frechet mean for examining 
performance networks, which can be extracted in groups with some 
advantages. Using the restricted Frechet mean method, the complexity 
of the group analysis method is greatly reduced, because the inference is 
made using group labels, and it is unclear whether such a large number 
of displacements is possible, limiting this to using the Frechet constraint. 
On the other side, this method selects one of the SOMs, which is actually 
the average of the group and can best represent the rest of the group. It 
can prevent the effect of outliers and corrupted data on final results. 

For HC individuals, the obtained data-driven networks were similar 
to those found in networks with other clustering methods such as 
multidimensional clustering [24], info map chart clustering [82], and 
independent component analysis [59,83] which validates the results of 
our analysis approach. 

Since we used the AAL atlas for network parcellation, our results 
were the most similar to the results reported in Refs. [59,83]. However, 
there are some differences in the networks obtained. The data-driven 
networks of DMN, SMN, VIS, SCN, and FPN were completely consis-
tent with three reference results. In our results, the AUD network was 
not found by the proposed data-driven approach, which is consistent 
with the results in Ref. [24]. We assigned cluster number 1, including 
the posterior cingulate gyrus, hippocampus, parahippocampus, angular 

Fig. 13. Statistical comparison of left-TLE vs. HC and right-TLE vs. HC (Bonferroni corrected p < 0.05) using Yeo 7 networks and Power 12 networks. Default-Mode 
Network (DMN), (2) Sensorimotor Network (SMN), (3) Visual Network (VSN), (4) Subcortical Network (SCN), (5) Frontoparietal Network (FPN), (6) Dorsal Attention 
Network (DAN), (7) Ventral Attention Network (VAN), (8) Limbic Network (LIN), (9) Auditory Network (AUN), (10) Memory Retrieval Network (MRN), (11) 
Somatomotor Hand Network (SHN), (12) Cingulo-Opercular Task Control Network (CON). 
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gyrus, thalamus, middle temporal gyrus, and inferior temporal gyrus, to 
the DMN network according to its anatomical locations and the Haus-
dorff distance [24,82]. The remaining two clusters were assigned to 
DAN and VAN networks associated with Yeo and power. The connec-
tivity matrix of these networks demonstrated homogeneity of the ob-
tained networks. 

4.1. Abnormal network connectivity in right and left mTLE 

Several significant differences in the connectivity of networks be-
tween left and right mTLE and HC subjects were observed. In general, 
participants with mTLE showed a higher within and between-network 
connectivity compared with the HC cohort. The results of the connec-
tivity change clearly showed that DMN and FPN have been most affected 
in the within-RSN and between-RSN in terms of increasing the connec-
tivity in LTLE and RTLE, confirming the findings reported in previous 
studies [19,84–87] that DMN and FPN are affected due to functional 
defects exhibited by patients with mTLE. This also suggests that mTLE 
may disrupt brain internal processing and attention networks. Studying 
the Power and Yeo networks also demonstrated that, DMN, FPN and 
DAN have been consistently and reliably most affected in the within and 
between network connectivity across mTLE patients. 

DMN plays a crucial role in mTLE. The connectivity alterations be-
tween DMN and the other networks could be associated with the 
structural abnormalities in the hippocampus [10,88,89] as well as ictal 
and interictal epileptic activities in this area [90] or to episodic memory 
and/or self-awareness [91,92]. DMN is activated at rest and is thought to 
be activated when a person focuses on processes of their inner state of 
mind, such as self-referential processing, biographical memory retrieval, 
or imagining the future. [92,93]; While DAN and VAN are active in the 
task mode and are mainly involved in external mental processes for 
maintenance and re-attention [94]. In addition, FPN is believed to 
involve in cognitive control functions such as attention, complex 
problem-solving, working memory, and error monitoring [95]. Also, 
DMN is a key network because of its ability to integrate information 
from cognitive networks and key functions [92]. The connection be-
tween DMN and task-positive networks (DAN, VAN, and FPN) indicates 
the existence of an exchange between the internal and external focus of 
attention in the brain [96,97]. Increased FC between the DMN network 
and the positive task may lead to network dysfunction and positive and 
negative tasks in maintaining cognitive function, which may be due to 
the effect of mTLE on cognitive functions. 

The idea that patients with LTLE are more prone to structural 
changes compared to the patient with RTLE has been mentioned in 
previous studies [98–101]. Our study and also Power and Yeo networks, 
show that this pattern also applies to functional activities, including 
connectivity between cognitive networks, which can be caused by 
cognitive abnormalities in patients with LTLE and an ineffective attempt 
to restore these extenuations. In patients with RTLE, only the connection 
between DMN and FPN was altered using STSOM method, that were a 
more limited pattern of changes compared to left TLE. Power and Yeo 
networks were also confirmed by the resulting networks of our proposed 
method. 

In our study, increased connectivity was observed between DMN and 
VSN in the left TLE cohort. There are studies showing an increase in 
primary visual cortex activity in mTLE [102,103]. The connectivity 
alteration between DMN and VIS can be caused by the involvement of 
the visual network with hippocampal regions [103] altered in mTLE. 
Therefore, at this point, the hypothesis of the occurrence of increased 
VIS and DMN connectivity in LTLE as a compensatory mechanism re-
quires further investigation. 

Based on our proposed method and also Power and Yeo methods, 
there were no significant difference between LTLE and RTLE cohorts in 
FC. Since we used the average of network connectivity for cohorts’ 
comparison, these results show that LTLE and RTLE cohorts are not 
significantly different in terms of average network connectivity. 

However, within and between network connectivity differences between 
the left mTLE and normal groups, as well as the right mTLE and normal 
groups, may be usefull to the laterality of the left and right mTLE. 

4.2. Limitation 

Besides reliable findings, our study has some limitations. One major 
limitation is the relatively small sample size especially for the control 
and the right mTLE cohorts. Despite we used the reproducibility method 
for the robustness of our results, increasing the sample size may lead to 
more reliable and homogeneous results. One of the limitations of this 
study was the lack of simultaneous EEG recording with this data, thus we 
cannot analyze and interpret the functional alterations caused by 
interictal spikes as well as the establishment of the epileptogenic zone as 
described by previous studies [104]. 

5. Conclusion 

In this paper, a new data-driven approach, STSOM, was proposed for 
clustering the cerebral cortex and the subcortical regions, using brain 
spatial structure and hemispheric symmetry properties in brain func-
tional networks, without any need for applying binding metrics to the 
functional connectivity matrix. Calculating the Hausdorff distance be-
tween resulted clusters and standard networks, we have demonstrated 
that the clusters created by our proposed method adequately overlap 
with the major recognized functional brain networks. In addition to 
individual-level clustering, we also took a new group-level approach and 
shared information among individuals. Our results showed that STSOM 
may identify functional brain networks properly in a wide range of SNR 
compared to the methods without spatial integration and also simple 
averaging techniques. Also, proposed method demonstrated to achieve 
more network homogeneity compared with its null model. Findings for 
the left and right mTLE patients support a reliable functional intercon-
nection within the functional brain network, and perhaps between them, 
especially for the default mode and frontoparietal networks, which in-
dicates that there is too frequent information communication between 
them as a result of epileptic activity and cognitive impairment in pa-
tients with mTLE. Besides, increased functional connectivity in negative 
and task networks may imply major disruption in cognitive networks in 
mTLE. 
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petrochemical wastewater treatment plant: an assessment of their removal using 
self-organising maps. Chemosphere 2012;87:962–8. https://doi.org/10.1016/j. 
chemosphere.2012.01.057. 

[64] Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans Pattern Anal 
Mach Intell PAMI- 1979;1:224–7. https://doi.org/10.1109/ 
TPAMI.1979.4766909. 

[65] Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of 
cluster analysis. J Comput Appl Math 1987;20:53–65. https://doi.org/10.1016/ 
0377-0427(87)90125-7. 

[66] Thorndike RL. Who belongs in the family? Psychometrika 1953;18:267–76. 
https://doi.org/10.1007/BF02289263. 

[67] Çinar Ö, Merdun H. Application of an unsupervised artificial neural network 
technique to multivariant surface water quality data. Ecol Res 2009;24:163–73. 
https://doi.org/10.1007/s11284-008-0495-z. 

[68] Nguyen TT, Kawamura A, Tong TN, Nakagawa N, Amaguchi H, Gilbuena R. 
Clustering spatio–seasonal hydrogeochemical data using self-organizing maps for 
groundwater quality assessment in the Red River Delta, Vietnam. J Hydrol 2015; 
522:661–73. https://doi.org/10.1016/j.jhydrol.2015.01.023. 

[69] Li T, Sun G, Yang C, Liang K, Ma S, Huang L. Science of the Total Environment 
Using self-organizing map for coastal water quality classi fi cation : towards a 
better understanding of patterns and processes. Sci Total Environ 2018;628–629: 
1446–59. https://doi.org/10.1016/j.scitotenv.2018.02.163. 

[70] Wang Y-B, Liu C-W, Wang S-W. Characterization of heavy-metal-contaminated 
sediment by using unsupervised multivariate techniques and health risk 

assessment. Ecotoxicol Environ Saf 2015;113:469–76. https://doi.org/10.1016/j. 
ecoenv.2014.12.036. 

[71] Deng D. Content-based image collection summarization and comparison using 
self-organizing maps. Pattern Recogn 2007;40:718–27. https://doi.org/10.1016/ 
j.patcog.2006.05.022. 

[72] Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE. 
Generation and evaluation of a cortical area parcellation from resting-state 
correlations. Cerebr Cortex 2016;26:288–303. https://doi.org/10.1093/cercor/ 
bhu239. 

[73] Meyer-Baese A, Wismueller A, Lange O. Comparison of two exploratory data 
analysis methods for fMRI: unsupervised clustering versus independent 
component analysis. IEEE Trans Inf Technol Biomed 2004;8:387–98. https://doi. 
org/10.1109/TITB.2004.834406. 

[74] Wang D, Buckner RL, Liu H. Functional specialization in the human brain 
estimated by intrinsic hemispheric interaction. J Neurosci 2014;34:12341–52. 
https://doi.org/10.1523/JNEUROSCI.0787-14.2014. 

[75] Joliot M, Tzourio-Mazoyer N, Mazoyer B. Intra-hemispheric intrinsic connectivity 
asymmetry and its relationships with handedness and language Lateralization. 
Neuropsychologia 2016;93:437–47. https://doi.org/10.1016/j. 
neuropsychologia.2016.03.013. 

[76] Muller AM, Meyer M. Language in the brain at rest: new insights from resting 
state data and graph theoretical analysis. Front Hum Neurosci 2014;8. https:// 
doi.org/10.3389/fnhum.2014.00228. 

[77] Branco P, Seixas D, Castro SL. Mapping language with resting-state functional 
magnetic resonance imaging: a study on the functional profile of the language 
network. Hum Brain Mapp 2020;41:545–60. https://doi.org/10.1002/ 
hbm.24821. 

[78] Tanaka N, Stufflebeam SM. Presurgical mapping of the language network using 
resting-state functional connectivity. Top Magn Reson Imag 2016;25:19–24. 
https://doi.org/10.1097/RMR.0000000000000073. 

[79] van den Heuvel M, Mandl R, Pol HH. Normalized cut group clustering of resting- 
state fMRI data. PLoS One 2008;3. https://doi.org/10.1371/journal. 
pone.0002001. 

[80] Glerean E, Pan RK, Salmi J, Kujala R, Lahnakoski JM, Roine U, Nummenmaa L, 
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