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Abstract 

Purpose: This study aimed to investigate the impact of image preprocessing steps, including Gray Level Discretization 

(GLD) and different Interpolation Algorithms (IA) on 18F-Fluorodeoxyglucose (18F-FDG) radiomics features in 

Non-Small Cell Lung Cancer (NSCLC). 

Materials and Methods: One hundred and seventy-two radiomics features from the first-, second-, and higher-order 

statistic features were calculated from a set of Positron Emission Tomography/Computed Tomography (PET/CT) images 

of 20 non-small cell lung cancer delineated tumors with volumes ranging from 10 to 418 cm3 regarding five intensity 

discretization schemes with the number of gray levels of 16, 32, 64, 128, and 256, and four Interpolation algorithms, 

including nearest neighbor, tricubic convolution and tricubic spline interpolation, and trilinear were used. Segmentation 

was based on 3D region growing-based. The Intraclass Correlation Coefficient (ICC), Overall Concordance Correlation 

Coefficient (OCCC), and Coefficient Of Variations (COV) were calculated to demonstrate the features' variability 

and select robust features. ICC and OCCC < 0.5 presented weak reliability, ICC and OCCC between 0.5 and 0.75 

illustrated appropriate reliability, values within 0.75 and 0.9 showed satisfying reliability, and values higher than 0.90 

indicate exceptional reliability. Besides, features with less than 10% COV have been selected as robust features. 

Results: All morphology family (except four features), statistic, and Intensity volume histogram families were not 

affected by GLD and IA. And the rest of them, 10 and 61 features showed COV ≤ 5% against GLD and IA, respectively. 

Ten and 80 features showed excellent reliability (ICC values greater than 0.90) against GLD and IA. Eight and 60 features 

showed OCCC≥0.90 against GLD and IA, respectively. Based on our results Inverse difference normalized and Inverse 

difference moment normalized from Grey Level Co-occurrence Matrix (GLCM) were the most robust features against 

GLD and Skewness from intensity histogram family and Inverse difference normalized and Inverse difference moment 

normalized from GLCM were the most robust features against IA. 

Conclusion: Preprocessing can substantially impact the 18F-FDG PET image radiomic features in NSCLC. The 

impact of gray level discretization on radiomics features is significant and more than Interpolation algorithms. 

Keywords: Non-Small Cell Lung Cancer; Gray Level Discretization; Interpolation Algorithms; Radiomics Features; 

Positron Emission Tomography/Computed Tomography. 
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1. Introduction  

Lung cancer is one of the main reasons for cancer-

related deaths globally. In 2018, more than 3.6 million 

patients with lung cancer and 2.1 million lung cancer-

related deaths were recorded in the world [1]. With 70% 

of lung cancer diagnoses following the opening of signs 

from limited or metastatic disorder, the five-year survival 

rate of lung cancer following investigation is observed in 

just 17% of patients [2, 3]. When the cancer is diagnosed, 

the survival rate is higher than 50% [4]. Sorrowfully, just 

15% of lung cancers are investigated at the first stages, and 

a reliable and affordable experiment method is still a 

significant need.       

Recently, numerous researchers have investigated 

the potential of radiomics features to predict patient 

consequences non-invasively [5-9]. Radiomics aims [5] 

to enhance the predictive and diagnostic value of medical 

images by converting images to data [10]. These features 

intend to quantify tumor characteristics such as intensity, 

heterogeneity, and shapes associated with clinical results 

and promote personalized cancer therapy [11]. Radiomics 

feature extraction framework can be divided into different 

steps, including data acquisition, image preprocessing, 

segmentation, radiomics feature extraction, and model 

advancement.  

For radiomics feature extraction, texture investigation 

is a broadly proven strategy that has revealed diagnostic 

potential in both Positron Emission Tomography (PET) 

and Computed Tomography (CT) images to characterize 

tumor heterogeneity [5]. Notwithstanding promoting 

research, there are novel trials to succeed in a particular 

step of the radiomics framework before proceeding from 

thought to clinical application [12]. A fundamental hurdle 

is to guarantee medical image features with predictive 

and/or prognostic value are robust to required image 

processing steps along with the radiomics principle. Like 

any biomarkers, the repeatability and reproducibility of 

radiomics features can be affected by different parameters. 

For instance, image-acquisition methods, test-retest 

repeatability, reconstruction algorithm, and multi-

center reproducibility all take part in questioning the 

repeatability and reproducibility radiomics features. 

Improved repeatability and reproducibility of radiomics 

features, with respect to different parameters such as 

pre- and post-processing including segmentation, data 

acquisition, gray level discretization, and Interpolation 

algorithms is beneficial. Phantom studies and test-retest 

research can assess feature reproducibility and repeatability, 

also can be used to feature selection utilizing the 

Concordance Correlation Coefficient (CCC) or Intraclass 

Correlation Coefficient (ICC) threshold values [13]. The 

Gray Level Discretization (GLD) and Interpolation 

Algorithms )IA ( methods have shown a direct effect on 

the reproducibility of texture features. The GLD and IA 

methods have shown a direct effect on the reproducibility 

of texture features. The effect of preprocessing on the PET 

texture features is considerable especially GLD and IA, and 

it is suggested in many studies, a precise examination of 

the impact of these parameters is necessary before any 

PET radiomics features clinical application. For example, 

Shafiq-ul-Hassan et al. [12] Studied the impact of grey 

level discretization on PET radiomics features in lung 

cancer phantom and concluded that radiomics researchers 

should estimate possible imaging biomarkers' dependence 

on grey level variations. Larue et al. [13] examine the 

impact of image preprocessing, including grey-level 

discretization, on radiomic feature values and their stability 

and selected stable radiomic features with CCC>0.85. Their 

results showed that image preprocessing especially grey-

level discretization, has a large impact on PET radiomics 

features. Altazi et al. [14] examined the impact of tumor 

segmentation, reconstruction, and gray level discretization 

on [18F]-Fluorodeoxyglucose  )18F-FDG ( radiomics features 

and showed 81.3% of radiomics features scored Dice 

coefficient > 0.75. Shiri et al. [15] studied the impact 

of reconstruction on 18F-FDG radiomics features and 

showed the 45% of features have Coefficient Of 

Variations )COV( ≤ 0.05. This study aimed to examine 

the influence of a wide range of gray level variability 

from 16, 32, 64, 128, and 256 and three different 

Interpolation algorithms on PET radiomics features in 

Non-Small Cell Lung Cancer )NSCLC ( and selecting 

robust features against GLD and IA in lung cancer. 

2. Materials and Methods  

2.1. Patient Images 

In this study, the images acquired with Discovery 690 

PET/CT scanner (GE Healthcare), It has 24 detector rings 

cover 15.7 cm axially and 70 cm Transaxial Field Of View 

(FOV). This scanner is also equipped with a 64-slice CT 

scan system, which has 58,368 solid-state detectors. In total, 

20 patients' images with NSCLC were examined (11 men, 

and 9 women, mean age: 45 ± 15y). All patients had 

biopsy-proven NSCLC, Adenocarcinoma (AC), and went 
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through PET/CT as part of the standard diagnostic staging 

path. All Patients were injected with 300.0 ± 56.8MBq of 
18F-FDG and scanned 50-60 minutes following the 

injection. The PET acquisition for 20 patients was 

conducted using the Ordered Subset Expectation 

Maximization (OSEM) algorithm with the modelling of the 

Point Spread Function (PSF) and 18 subsets and three 

iterations. To cover the whole body area (from skull to mid-

thigh), seven to eight-bed positions were acquired. The 

post-reconstruction 6.4mm full width at half maximum 

(FWHM) filter was applied to the images. Also, low dose 

CT data were used for Attenuation correction.  

2.2. Image Segmentation 

All segmentations were applied using the Matlab 

2.3. Post-Processing Methods 

2.3.1. Gray Level Discretization 

All of the image post-processing was applied to the 

images using the SERA package [18] in Matlab. Two ways 

to discretization are frequently utilized. The first method 

includes the discretization to a Fixed Bin Number (FBN) 

and the other one involves a fixed width of bins. 

Nevertheless; both approaches have unique features that 

may advance them properly suited for special goals [17]. In 

this study, to investigate the impact of Gestational Diabetes 

Mellitus (GDM) on 18F-FDG radiomics features in 

NSCLC, all images were processed with different range of 

gray levels of 16, 32, 64, 128, and 256, fixed bin numbers 

with linear Interpolation algorithm. Fixed bin number 

methods are defined as follows: 

𝑋𝑑,𝑘 = {
[𝑁𝑔

𝑋𝑔𝑙,𝑘−𝑋𝑔𝑙,𝑚𝑖𝑛

𝑋𝑔𝑙,𝑚𝑎𝑥−𝑋𝑔𝑙,𝑚𝑖𝑛
] + 1, 𝑋𝑔𝑙,𝑘 < 𝑋𝑔𝑙,𝑚𝑎𝑥

𝑁𝑔                                     , 𝑋𝑔𝑙,𝑘 = 𝑋𝑔𝑙,𝑚𝑎𝑥

     (1) 

At Equation 1 (𝑋𝑔𝑙 is the intensity and 𝑁𝑔 is the number 

of bins.) 

The FBN method includes a normalizing impact that 

may be advantageous if intensity factors are unpredictable 

and where diversity is deemed essential. 2019b software. 

3D region growing-based segmentation was used for 

lesions Volume Of Interest (VOI) segmentation. The 

algorithm is a statistical region growing that needs one or 

more seeds as input. The vicinity (standard deviation and 

the mean of the intensity) is measured by the statistical 

pattern on the seed points regions. The method is iterated on 

similarly to standard data clustering algorithms that the 

reproducibility of segmentation with it is approved in a 

recent study [16] (Figure 1).  

Besides, since amounts of numerous radiomics features 

depend on the number of grey levels located inside the 

segmented region, the application of an FBN discretization 

provides for a primary association of feature values over 

various investigated Region Of Interest (ROIs). 

2.3.2. Interpolation Algorithms 

Various algorithms are frequently applied for 

Interpolation. In this study, to examine the impact of the IA 

on radiomics features, four Interpolation algorithms, 

including nearest neighbor, tricubic convolution and 

tricubic spline interpolation, and trilinear were applied to the 

images with fixed bin size 64 gray level before tumor 

delineation. Interpolation algorithms interpret the intensities 

of the images of the primary image grid through an 

interpolation one. Their center spatially represents the 

voxels of these grids. Numerous algorithms are frequently 

utilized for interpolation, including nearest neighbor, 

tricubic convolution and tricubic spline interpolation, and 

trilinear. To describe shortly, nearest-neighbor interpolation 

indicates the most nearly voxel's intensity in the primary 

grid toward all voxel in the interpolation grid. Trilinear-

interpolation utilizes the intensities of the eight most nearly 

voxels in the primary grid to measure a different 

interpolated intensity utilizing linear interpolation. 

Tricubic-spline interpolation and tricubic-convolution 

induce a broader neighborhood to estimate a continuous, 

smooth third-order polynomial at interpolation grid in the 

voxel centers. The distinction between tricubic-spline and 

tricubic-convolution interpolation prevails in the 

 

Figure 1. 3D-region growing-based segmentation in Matlab 
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implementation. Whereas tricubic-convolution approaches 

the answer utilizing a convolution filter, tricubic spline 

interpolation estimates the continuous and smooth third-

order polynomial at each voxel center [31].  

2.4. Feature Extraction  

Radiomics features were extracted using SERA code 

[18]. Overall, One hundred and seventy two radiomics 

features, including Morphology (n=29), Intensity 

histogram (n=23), Intensity-based statistics (n=18), 

Intensity-volume histogram (n=7), Grey level run length 

matrix (GLRLM) (n=16), Grey level co-occurrence 

matrix (GLCM) (n=25), Grey level distance zone matrix 

(GLDZM) (n=16), Grey level size zone matrix (GLSZM) 

(n=16), Neighboring grey level dependence matrix 

(NGLDM) (n=17), and Neighborhood grey tone 

difference matrix (NGTDM) (n=5) were extracted from 

each lesions. Radiomics features and their family are listed 

in the Table 1.  

Table1. One hundred and seventy-two Radiomics features extracted from patient images 

Family Image Biomarker Family Image Biomarker 

Morphology 

Volume (mesh-based) 

Volume (counting) 

Surface area 

Surface to volume ratio 

Compactness 1 

Compactness 2 

Spherical disproportion 

Sphericity 

Asphericity 

Centre of mass shift 

Maximum 3D diameter 

Major axis length 

Minor axis length 

Least axis length 

Elongation 

Flatness 

Volume density (AABB) 

Area density (AABB) 

Volume density (OMBB) 

Area density (OMBB) 

Volume density (AEE) 

Area density (AEE) 

Volume density (MVEE) 

Area density (MVEE) 

Volume density (convex hull) 

Area density (convex hull) 

Integrated intensity 

Moran's I index 

Geary's C measure 

Co-occurrence 

matrix (3D, merged) 

Joint maximum 

Joint average 

Joint variance 

Joint entropy 

Difference average 

Difference variance 

Difference entropy 

Sum average 

Sum variance 

Sum entropy 

Angular second moment 

Contrast 

Dissimilarity 

Inverse difference 

Inverse difference normalized 

Inverse difference moment 

Inverse difference moment normalized  

cm_inv_diff_mom_norm_3D_comb 

Inverse variance 

Correlation 

Autocorrelation 

Cluster tendency 

Cluster shade 

Cluster prominence 

Information correlation 1 

Information correlation 2 

Statistics 

Mean 

Variance 

Skewness 

(Excess) kurtosis 

Median 

Minimum 

10th percentile 

90th percentile 

Maximum 

Interquartile range 

Range 

Mean absolute deviation 

Robust mean absolute deviation 

Median absolute deviation 

Coefficient of variation 

Quartile coefficient of 

dispersion 

Energy 

Root mean square 

Run length matrix 

(3D, merged) 

Short runs emphasis 

Long runs emphasis 

Low grey level run emphasis 

High grey level run emphasis 

Short run low grey level emphasis 

Short run high grey level emphasis 

Long run low grey level emphasis 

Long run high grey level emphasis 

Grey level non-uniformity 

Grey level non-uniformity normalized 

Run length non-uniformity 

Run length non-uniformity normalized 

Run percentage 

Grey level variance 

Run length variance 

Run entropy 
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Family Image Biomarker Family Image Biomarker 

Intensity 

Histogram 

Mean 

Variance 

Skewness 

Kurtosis 

Median 

Minimum 

10th percentile 

90th percentile 

Maximum 

Mode 

Interquartile range 

Range 

Mean absolute deviation 

Robust mean absolute deviation 

Median absolute deviation 

Coefficient of variation 

Quartile coefficient of 

dispersion 

Entropy 

Uniformity 

Maximum histogram gradient 

Maximum gradient grey level 

Minimum histogram gradient 

Minimum gradient grey level 

Size Zone Matrix 

(3D) 

Small zone emphasis 

Large zone emphasis 

Low grey level emphasis 

High grey level emphasis 

Small zone low grey level emphasis 

Small zone high grey level emphasis 

Large zone low grey level emphasis 

Large zone high grey level emphasis 

Grey level non-uniformity 

Grey level non uniformity normalized 

Zone size non-uniformity 

Zone size non-uniformity normalized 

Zone percentage 

Grey level variance 

Zone size variance 

Zone size entropy 

Intensity 

Volume 

Histogram 

Volume fraction at 10% 

intensity 

Volume fraction at 90% 

intensity 

Intensity at 10% volume 

Intensity at 90% volume 

Volume fraction difference 

between 10% and 90% intensity 

Intensity difference between 

10% and 90% volume 

Area under the IVH curve 

Distance Zone 

Matrix (3D) 

Small distance emphasis 

Large distance emphasis 

Low grey level emphasis 

High grey level emphasis 

Small distance low grey level emphasis 

Small distance high grey level emphasis 

Large distance low grey level emphasis 

Large distance high grey level emphasis 

Grey level non-uniformity 

Grey level non-uniformity normalized 

Zone distance non-uniformity 

Zone distance non-uniformity normalized 

Zone percentage 

Grey level variance 

Zone distance variance 

Zone distance entropy 

Family Image biomarker 

Neighborhood grey tone difference matrix 

(3D) 

Coarseness 

Contrast 

Busyness 

Complexity 

Strength 

Low dependence emphasis 

High dependence emphasis 

Low grey level count emphasis 

High grey level count emphasis 

Low dependence low grey level emphasis 

Low dependence high grey level emphasis 

High dependence low grey level emphasis 

High dependence high grey level emphasis 

Grey level non-uniformity 

Grey level non-uniformity normalized 

Dependence count non-uniformity 

Dependence count non-uniformity normalized 

Dependence count percentage 

Grey level variance 

Dependence count variance 

Dependence count entropy 

Dependence count energy 
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2.5. Statistical Analysis 

To demonstrate the impact of GLD and IA on radiomics 

features, different statistical analyses were performed. 

ICC, Overall Concordance Correlation Coefficient 

(OCCC), and Coefficient Of Variations (COV) were 

calculated for each feature [14,15]. Based on Koo and 

Li's study [34], two-way random effects with an absolute 

agreement and multiple raters were used for ICC 

calculation. ICC and OCCC values < 0.5 demonstrate weak 

reliability, ICC and OCCC between 0.5 and 0.75 show 

reasonable reliability, values within 0.75 and 0.9 indicate 

satisfying reliability, and values higher than 0.90 indicate 

exceptional reliability [19]. Furthermore, radiomics features 

with less than 10% COV over different GLD or 

Segmentation Methods (SM) have been selected as 

robust features [15]. For ICC [20-22] and OCCC [23, 

24] calculation we used ‘irr’ (0.84.1) and ‘epiR’ (2.0.19) 

libraries in R software, respectively. 

3. Results  

3.1 Impact of Gray Level Discretization 

In this study, we had 20 PET NSCLC images with AC. 

All images were processed and five different gray levels, 

including 16, 32, 64, 128, and 256 were applied to the 

images. The ICC, OCCC, and COV values for all shape 

features were higher than 90% because of the objectivity 

that the same segmentations in test images were applied 

onto retest images. Therefore, all morphology, Statistics, 

and Intensity volume histogram features were eliminated 

from further analysis. Ten features showed less than 10% 

COV, including Inverse difference normalized, Inverse 

difference moment normalized, Information correlation 2, 

Correlation of GLCM family, Skewness, Coefficient 

of variation, and Quartile coefficient of dispersion of 

Intensity histogram family and Dependence count entropy 

of NGLDM family. Four features showed 10≤COV<20, 

and 103 features (87% of 118 features) showed more than 

20% COV. ICC results showed ten features were 

exceptional reliability (ICC≥ 0.9) such as Inverse difference 

normalized, Inverse difference moment normalized, 

Information correlation 2, Correlation of GLCM family, 

Skewness, Kurtosis, Coefficient of variation, Quartile 

coefficient of dispersion of Intensity histogram family, Run 

length non-uniformity of GLRLM family and Coarseness 

of NGDTM. Eleven features showed 0.9≤ICC≥0.75, 

and 9 features were reasonably reliable. Eighty-four 

radiomics features (71% of 118) showed less than 0.5 

ICC over GLD. OCCC statistical analysis showed eight 

features have values more than 0.9, such as Inverse difference 

normalized, Inverse difference moment normalized, 

Correlation of GLCM, Skewness, Kurtosis, Coefficient 

of variation, and Quartile coefficient of dispersion of 

Intensity histogram family, and Coarseness of NGDTM. 

One and three features showed satisfying reliability and 

reasonable reliability, respectively. 

Figure 2 depicts the percentage COV of each radiomics 

feature family over different gray levels and Interpolation 

algorithms. In Figure 3 we represent the ICC and OCCC 

values concentration over different gray level variability 

and Figure 4 illustrates bar plots depicting the percentage 

of four ICC and OCCC categories for different image 

preprocessing methods over all radiomic features, our 

results indicate the impact of gray level variability on 

features is significant, and about 73% and 89% of ICC 

     
Figure 2. Percentage COV of radiomics features’ family (the left figure is for the GLD and the right one is for IA) 
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and OCCC values are less than 0.5 which shows weak 

reliability.  

Percentage COV has been categorized into three groups: 

COV lesser than 10 percent are highly robust, and COV 

between 10 to 20 percent are robust, and COV of more 

than 20 percent are not robust.  Interpolation algorithms 

between zeros to one. It can be observed that ICC and 

OCCC values concentration of gray level variability 

are about 0.25 or less. In Figure 5 we illustrate the 

probability density (PD) of ICC and OCCC distribution 

for various radiomic features over different gray levels 

variability and Interpolation algorithms which is used 

to present a quantitative analytical description of OCCC 

and ICC. In PDD, peak value and shape can be utilized 

to analyze the ICC results. Precisely, in the current study, 

we utilize this structure to evaluate how radiomic features 

are affected over various image post-processing methods. 

This Figure demonstrates the concentration probability 

of ICC and OCCC values of gray level impact on radiomics 

features are lesser than 0.5, and specially OCCC values 

concentration probability are lower than 0.25. In Figure 6, 

we represent the variability of various radiomics 

features with the percentage of COV over different 

gray levels and Interpolation algorithms. Forty-four 

features (37% of 118) showed more than 100% COV 

over different gray level variability.   

 

Figure 3. ICC and OCCC values concentration within 0 to 1. (0= not reproducible and 1= highly reproducible)   

 

Figure 4. ICC and OCCC bar plots for Image preprocessing including gray level discretization and Interpolation 

algorithms across all radiomic features categorize in 4 groups. ICC and OCCC values less than 0.5 demonstrate weak 

reliability, ICC and OCCC between 0.5 and 0.75 show reasonable reliability, values within 0.75 and 0.9 

 

Figure 5. A Probability Density Distribution (PDD) plot compares ICC and OCCC values of various radiomics 

features over different gray levels and Interpolation algorithms using peak values and shape of each plot. X-axis: 

ICC and OCCC value; y-axis: density value 
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Figure 6. Percentage COV of features over different gray levels and Interpolation algorithms 
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Figure 7 indicates the ICC and OCCC values (categorized 

1 to 4: 1 = low and 4 = highly robust) of various radiomic 

features extracted from discretization different gray level 

variability Interpolation algorithms of images. 

 

Figure 7. ICC and OCCC heat map of the percentage values of radiomics features categorized in 4 groups over different 

gray level and Interpolation algorithms. (Categorized 1 to 4: 1 = low and 4= highly robust) 
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4. Discussion  

The consent of radiomics, considering other -omics, 

outlines robust labels for personalized medicine 

administrations. One of its possible utilization might be 

in tracking and predicting clinical outcomes for numerous 

treatment planning. Oikonomou et al. [25] recognized a 

significant relationship between 18F–FDG PET radiomics 

features and lung cancer staging. 

Although the application of radiomic features as a 

quantitative marker for diagnosis and prognosis, staging 

or predicting response to therapy is a growing utilization 

of FDG PET, examining the robustness, reliability, and 

reproducibility of such image biomarker within physical 

or biological factors have determined to be a measure 

of vast significance. Besides, numerous medical image 

factors cause distinctive hurdles while extracting and 

quantifying the tumor’s FDG uptake data. The evaluation 

of reproducibility and repeatability for medical image 

radiomics features has earned growing attention [26]. 

Gathering proof recommends the value of taking such 

investigations into account. Researches have indicated 

that repeatable radiomic features must be applied for 

predictive treatment modeling [27]. This study aimed 

to evaluate PET radiomic features' repeatability in NSCLC 

patients against different gray levels and Interpolation 

algorithms. In terms of radiomics features extraction, 

several tools have been extended for feature extraction 

[28-30]. Our study was led using the SERA package 

compatible with the IBSI [31]. IBSI is an independent 

global collaboration working approaching the regularity 

of image biomarkers.  

In a recent study, Larue et al. [33] showed that nearly 

all of the radiomics features vary in value while changing 

bin width for gray-level discretization, and in some 

features, a considerable or a minimal bin width ended 

in distinctive values in scanning. They showed that 

feature values fluctuate over various bin widths, but it 

could not prove that the selection of bin width dramatically 

influences the stability of radiomic features. The impact 

of GLD on the predictive ability of radiomic features has 

not been examined yet. 

Our analysis showed that preprocessing, mainly gray 

level variability, can substantially impact the radiomics 

features. As we can see in Figures 3, 4, and 5 the 

concentration of ICC and OCCC values are located in less 

than 0.5, demonstrating the massive impact of gray level 

variability on features. Our results showed ten features 

showing COV less than 10%, including four GLCM family 

features, three features of the Intensity histogram family, 

and four features showed 10≤COV≥20. None of the 

NGTDM and GLSZM families illustrated reproducibility; 

therefore, all of them were admitted sensitive to gray-

level discretization. As a comparison, Altazi et al. [14] 

showed 18% percent of the GLCM family is highly 

reproducible, and the same showed none of the NGTDM 

and GLSZM families are robust against GLD. 

Shafiq-ul-Hassan et al. [32] confirmed that resampling 

decreased the variability of features from COV>70% 

to COV<30%. Consequently, we suggest regularly apply 

resampling before any radiomic study. Our data were 

resampled to an isotropic voxel size of 2×2×2mm3 which 

was suggested by IBSI using a nearest-neighbor, linear, 

and cubic interpolation, while in the Shafiq-ul-Hassan 

et al. [32] study, the voxel size of resampling was 

1×1×2mm3 applying linear interpolation. In another study, 

Larue et al. [33] confirmed that linear interpolation 

followed by the smallest value of the features range about 

half of the features and cubic-interpolation for 30% of 

the features, while nearest-neighbor interpolation showed 

the most considerable extent, 61% of all. Hence, linear 

and/or cubic interpolations are preferred over nearest-

neighbor interpolation for the 1×1×3mm3 voxels resampling. 

In our study, the majority of the local texture features 

extracted from the images showed COV>20% against 

parameters. These texture features are categorized into 

separate families. Radiomics features that focus on low-

intensity areas and small homogenous inside the tumor 

mass indicated great sensitivity to gray-level variation. 

As we observed from our result, forty-four features (25% 

of all) showed more than 100% COV over different gray 

level variability. These results can be observed in other 

studies [14]. The GLCM family showed more robust 

features against gray level variability with four robust 

features among texture features. Other texture features 

are highly influenced by gray-level variation. Furthermore, 

altogether, about 7% of texture features showed COV<10%. 

Similarly, 5 of 23 intensity volume histogram features 

showed COV<10% against GLD. This result was 

supposed due to; initially, they have great fluctuations 

because of their absence of measuring meaningful data 

of uptake heterogeneity inside the segmented lesions. 

Last but not least, it is due to the sensitive process 

applied to extract those features. 
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We calculated shape-based radiomics features to 

demonstrate the morphological features explaining the 

distribution of voxel-intensity of segmented lesions 

externally regarding spatial relations among neighboring 

voxel; therefore, all of the shape-based radiomics features 

illustrated insensitivity against GLD, our result are 

fully match with Altazi et al. [14]. 

On the contrary, Shafiq et al. [32] did not report the 

same results toward PET radiomics features. However, 

GLCM features indicated more reproducibility following 

the correction for gray-level and volume dependence. 

Our results illustrated that the impact of different 

Interpolation algorithms on radiomics features is lesser 

than GLD. As we can see in Figures 3, 4, and 5, the 

concentrations of ICC and OCCC Interpolation algorithms 

s' values are located at more than 0.75. Also, our COV 

results demonstrated that 34% of radiomics features are 

robust against Interpolation algorithms. This percentage 

can be increased if we add the morphology, Statistics, 

and Intensity volume histogram family features to the 

number of robust features. The primary limitation of 

this study was the size of the data set. Future research 

should utilize more extensive data sets to increase the 

repeatability and reproducibility of radiomics features. 

The limitation of the current study is the limited number 

of patient data. However the outcomes and results of 

current research should be verified using more substantial 

and multicenter dataset. 

5. Conclusion 

This study investigated the reproducibility of numerous 

radiomic features extracted from 18F-FDG PET images 

of non-small cell lung cancer, adenocarcinoma against 

various parameters: various gray-level including 16, 

32, 64, 128, and 256; besides, different Interpolation 

algorithms such as Linear, Cubic, and Nearest. Based 

on our results, most of the radiomic features in this 

study were extremely affected by GLD. The impact of 

IA on PET radiomics feature is much lesser than GLD 

but still is considerable. Hence, we recommend that 

careful examination of radiomic features' reproducibility 

is required before employing them in any clinical treatments. 
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