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Abstract
Purpose Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the
human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to
be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine
learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE).
Methods Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of
35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is
used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness,
kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left
and right epileptogenic sides in patients with TLE.
Results Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification
outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic
features also elevates the accuracy to 91.5%.
Conclusion Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph
measures along with machine learning approach can identify the temporal trend of some specific network features. These
network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.
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Introduction

Temporal lobe epilepsy (TLE) is the most frequent type of
pharmacoresistant focal epilepsy in adults accountable for sur-
gical treatment. However, due to a lack of clear localizing the

seizer source, surgery cannot be performed in about 30%of TLE
patients [1]. In standard presurgical evaluation protocols, video-
EEG and high-resolutionMRI play a critical role [2]. Functional
connectivity based on functional MRI (fMRI) may provide ad-
ditional useful information for the purpose of lateralization.
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Functional and structural neuroimaging analyses have sup-
ported the theory that TLE is a disorder which may affect
brain regions and alter networks in temporal lobe and beyond
[3–9].

Recent studies show that the patterns of functional connec-
tivity may be different between left TLE (L-TLE) and right
TLE (R-TLE), including redistribution of global functional
activation in L-TLE and functional impairments in R-TLE
[10–14]. Default mode network (DMN) and motor network
(MN) are among subcortical networks where functional alter-
ations have been evidenced [15, 16].

The graph-based connectivity analysis is a powerful quan-
titative method for explaining the topological architecture of
complex brain networks. Network abnormalities in terms of
functional connectivity using graph theoretical metrics may be
served as markers for clinical diagnostic and also disease stag-
ing estimation [17, 18]. The efficiency, clustering, modularity,
and small-worldness are among network metrics that extract
topological properties of brain networks [19, 20].

Despite a large amount of research using graph-based con-
nectivity analysis in resting state, the majority of studies are
based on temporal stationarity assumption of the functional
interaction between blood-oxygen-level-dependent (BOLD)
signals. However, recent studies increasingly have shown that
functional connectivity between brain regions is inherently
non-stationary and evidenced to be varying over time and
associated with the cognitive states [21, 22]. Functional con-
nectivity has been shown to be dynamic and varied during
scan time [23], which may be appropriately modeled by the
first-order temporal dynamics. Investigating resting-state
brain topology from a dynamic perspective is a relatively
new concept and still under the debate, it reflects the function-
al network configuration overlying on a steady platform of
anatomy [24, 25].

Recently, some studies have reported discrepant results
provided by graph theory for functional connectivity [26,
27]. For instance, an altering trend in clustering coefficient
and characteristic path length has been reported in patients
with epilepsy compared with controls [3, 28]. In addition,
the temporal instability in some topological features inspires
the researchers to obtain the topology of functional network
settings [29]. Adopting a dynamic approach in graph-based

analysis of the network topology may address inconsistencies
in the previous studies.

In this study, we exploited the clustering coefficients and
centrality-based graph measures including degree centrality,
betweenness centrality, closeness centrality, and page rank, as
well as node neighbor’s degree as a new graph measure. We
used these measures for analyzing resting-state fMRI and
characterizing the differences in static and dynamic functional
connectivity between the L-TLE and R-TLE patients. Using a
machine learning approach, we also analyzed these graph
measures for characterizing nodal level differences between
L-TLE and R-TLE in resting-state functional networks.

Materials and methods

Subjects

We studied 35 unilateral patients with left or right TLE (see
Table 1 for the patient characteristics). The study was ap-
proved by the Institutional Review Board of Tehran
University of Medical Sciences. Patients with disabling cog-
nitive impairment or with other neurological diseases were
excluded beforehand. Twenty-one cases were L-TLE and 14
cases were R-TLE.

Image acquisition

MRI images were acquired on a 3-T scanner (Siemens Prisma,
Erlangen, Germany) at the Iranian National Brain Mapping
Laboratory (NMBL). Using an EPI resting-state fMRI proto-
col, 330 functional volumes were acquired with the imaging
parameters of TR/TE = 3000/30 ms, flip angle = 90°, acqui-
sition matrix = 64 × 64, and the slice thickness = 2.4 mm in
16.5 min, while the patients were instructed to relax with their
eyes closed and think nothing in particular. Using an
MPRAGE protocol, T1-weighted structural scans were ac-
quired for clinical diagnostic purposes, with the imaging pa-
rameters of TR/TE = 1840/3.47 ms, acquisition matrix = 256
× 256, and slice thickness = 1.0 mm.

Table 1 Participant
characteristics Characteristic Left TLE Right TLE P value

Sample size 21 14 -

Sex (M/F) 10/11 8/6 0.73‡

Age (years), mean ± STD [range] 31.9 ± 8.2 [17–54] 26.8 ± 6.2 [17–36] 0.059*

Onset age (years), mean ± STD [range] 10.8 ± 8.2 [0.5–29] 9.4 ± 9.4 [0.5–28] 0.6*

‡ Fisher exact test

*Two-sample t test
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Image preprocessing

DPARSF 4.3 and REST toolboxes (http://rfmri.org/dpabi)
[30] were performed for preprocessing of the resting-state
fMRI data. For each subject, the first 10 time points were
removed. The remaining 320 volumes were first corrected
for the time difference between slices and then realigned to
the middle volume for head motion correction (no participant
had head motion no greater than 3 mm or 3°). Using the
normalization parameters estimated by the T1 structural im-
age, the realigned functional volumes with a voxel size of
(3,3,3) were spatially normalized to the Montreal
Neurological Institute (MNI) space. Then, using a Gaussian
kernel (FWHM = 8 mm), the dataset was smoothed, linearly
detrended, and temporally filtered (0.01–0.08 Hz) to decrease
the effect of low-frequency drifts. Using Automated
Anatomical Labeling (AAL) atlas [31], the volumes were seg-
mented into 90 anatomical regions of interest (ROIs) to extract
the ROI time series. The mean time series of all voxels within
the ROIs were used for the connectivity analysis.

Connectivity analysis and graph theory measures

We calculated functional connectivity using Pearson’s corre-
lation coefficient between each pair of ROI time series
representing brain regional activity (Eq. 1).

ρX ;Y ¼ E X−μXð Þ Y−μYð Þ½ �
σXσY

ð1Þ

where μX and μY are the mean and σX and σY are the standard
deviations of the signals X and Y, respectively, and E[.] is the
expectation operator. Pearson’s correlation coefficient result is

a symmetric adjacency matrix for each patient. For dynamic
functional connectivity, the time-varying correlation analysis
between brain regions was performed while sliding time win-
dows, characterized by the lengthW (from time t = 1 to time t
=W). The same calculations were then repeated in the shifted
window by a temporal lag L, over the time interval [1 + L,W +
L]. This process was repeated until the window spanned the
end part of the time courses, to eventually obtain a connectiv-
ity time course (Fig. 1). Window sizes of 30–60 s have been
suggested in previous works to capture the fluctuations in the
resting-state functional connectivity [32] with only small ef-
fects on capturing the effective functional dynamics [33]. We
consideredW = 30 s for window size, with a lag L = 6 s in total
scan time T = 16 m (considering removal of the first 10
points). Static functional connectivity was also calculated to
compare its results with that of dynamic connectivity.

Negative correlations of functional connectivity matrix
were set to 0 to improve the reliability of graph theory mea-
sures [34]. Furthermore, some of the unweighted and undi-
rected links were removed by thresholding the adjacency ma-
trix. Since there is no definitive agreement on the threshold
selection method, based on previous studies [35, 36], a set of
proportional thresholds was investigated over a range from 0.5
to 0.9 corresponding to a number of edges from 2520 to 1420,
respectively. For example, a proportional threshold of 0.9 in-
dicates that the 10% strongest connections are retained.

Various brain network topology measures such as nodal
and global characteristic path length, centrality, efficiency,
and small-worldness have been investigated in previous stud-
ies [3, 27, 37, 38]. Centrality metrics represent how informa-
tion is integrated and communicated through regions in the
brain network. Unlike independent component analysis (ICA)
or seed-based approaches, centrality metrics account for each
region’s relationship with the entire functional connectivity,

Fig. 1 The concept of dynamic
functional connectivity analysis
using the sliding window
technique
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not just its relation to individual regions; therefore, they ex-
plain global sensitivity [39, 40]. As such, we opted to focus on
centrality properties to capture the complexity of the fMRI
functional connectivity. Centrality metrics including degree
centrality, betweenness centrality, closeness centrality, and
page rank have been previously investigated in the literature.
We also used node neighbor’s degree as another centrality
metric, which is a method for measuring dependencies be-
tween degrees of neighbor nodes in a graph and represented
as follows:

CN ið Þ ¼ 1

N ið Þj j ∑
j∈N ið Þ

k j ð2Þ

where N(i) are the neighbors of the nodes i and kj is the
degree of the node j belonging to N(i).

The clustering coefficient has been used as one of the com-
mon and informative graph metrics in functional connectivity
analysis [41–43]. Represented graph measures were examined
in a nodal level. Python NetworkX (Python library for study-
ing graphs and networks) was used for the calculation of graph
theoretical parameters.

Statistical analysis

We used a multilevel mixed effects linear regression model to
determine the time trends. To this end, a regression coefficient
was considered for the time element in the model. Negative
and positive values of the regression coefficients indicated
decreasing and increasing trends, respectively. The same
method was applied for the statistical analysis using R soft-
ware on a significant difference between L-TLE and R-TLE
groups (P < 0.05).

Feature selection and classification

In the third step, the right and left TLE patients were classified
using the graph features. Feature extraction and selection for
static and dynamic analyses are explained as follows.

Static analysis

We represented graph properties of all 90 nodes for each sub-
ject. We considered 6 feature categories corresponding to 6
graph measures. Each feature category contained 90 values
corresponding to the related nodes. We used random forest
(RF) method for feature selection in each feature category,
which is an ensemble method using a large number of random
decision trees [44]. In RF, random subsets of the observations
(bootstrapped sampling) and candidate variables are used for
creating each of the trees. In the current study, in each feature
category over all subjects, RF method was repeated 100 times
and nodes were ranked due to their average importance. Top 5

to 40 high ranked nodes (with a step of 5) were selected for
each feature category.

Dynamic analysis

In dynamic analysis, in addition to the burden of the high
dimensionality in the spatial domain and feature space, the
time window is an additional “curse of dimensionality.” We
calculated the following attributes for dynamic connectivity:
mean, variance, skewness, kurtosis, and Shannon entropy
across all time windows for each of the 6 nodal graph mea-
sures. In dynamic analysis, the total number of features cate-
gory was set to 30 (5 time features × 6 graph features), to each
we assigned 90 nodes as a single feature. The RF method
ranked the nodes in each feature category over all subjects;
the top 5 to 40 high ranked nodes (with a step of 5 numbers of
selected nodes) were subsequently selected for classification.

Classification

Support vector machine (SVM) classifier was employed for
classification with a quadratic kernel. Leave-one-out cross-
validation (LOOCV) approach was used for training and test-
ing of SVM classification. For each measure, a subject data
was used for testing, and the remaining was used for training.
The performance of the classifier was assessed using the clas-
sification accuracy and receiver operating characteristic
(ROC) curves. MATLAB R2018b was used for SVM classi-
fication, ROC, and RF method analysis.

For both static and dynamic feature categories, we applied
the SVM classifier using the top 5 to 40 high ranked nodes
(with a step size of 5) separately. For the number of nodes with
the best classification results, we applied four levels of classi-
fication accuracy threshold (0.5, 0.6, 0.7, and 0.8) for features
categories. The ones with an accuracy higher than a specific
threshold were selected as the best feature categories associ-
atedwith it. Then, we applied the classification again using the
selected feature categories for different threshold values.
Finally, we considered the feature categories with the most
classification accuracy as the final selected feature categories.

Results

The application of a high threshold for the graph binarization
would cause a sparse connectivity matrix with a few connec-
tions between the nodes. On the other hand, a low threshold
would cause an over connection between the nodes and the
network to become almost a regular lattice. Given these, we
chose a medium threshold of 0.8 as proportional thresholding
for preserving small-worldness property of real functional net-
works in the brain.
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Statistical analysis results

The statistical results of static functional connectivity in
Table 2 show that degree and closeness centralities in L-
TLE patients were significantly larger than those in R-TLE
patients (P < 0.05). In addition, betweenness centrality in L-
TLE patients was significantly smaller than that in R-TLE
patients (P < 0.05). No significant difference between the
two groups was found for any of clustering coefficient, node
neighbor’s degree, or page rank features.

Dynamic functional connectivity, on the other hand, sug-
gested that the clustering coefficient, betweenness centrality,
and node neighbor’s degree measures in L-TLE patients were
significantly smaller compared with R-TLE patients (P <
0.05). Furthermore, the degree centrality and closeness cen-
trality metrics were significantly larger in L-TLE patients
compared with R-TLE patients (P < 0.05). Using the page
rank feature, we did not show any significant difference be-
tween the two TLE groups.

Time trend of graph measures

The alternation of each graph measure during imaging time
was investigated. As presented in Table 3, the clustering co-
efficient showed a decrease in L-TLE and an increase in R-
TLE patients. Also, our results showed that the degree cen-
trality, node neighbor’s degree, and closeness centrality mea-
sures were decreased and the page rank was increased in both
L-TLE and R-TLE patients. The betweenness centrality mea-
sure was decreased in L-TLE and increased in R-TLE patients
during imaging time

Classification result

There were 540 candidate features (6 feature categories in 90
nodes) in static analysis. Figure 2 shows the result of classifi-
cation accuracy for 5 to 40 most important nodes selected in
each graph measure. The page rank and then the node neigh-
bor’s degree showed superior accuracy compared with other
graph measures. There were also 2700 candidate features (30
feature categories in 90 nodes) in dynamic analysis. Figure 3
shows the result of classification accuracy for 5 to 40 most
important nodes selected in each new feature category.

Figure 4a shows the classification accuracy for the 5 to 40
most important nodes among all candidate feature categories.
As can be observed, the 15 selected nodes have the best per-
formance in static and dynamic analyses with 82.0% and
88.5% accuracy, respectively. Figure 4b shows the result of
classification using the selected feature categories related to
multiple thresholds on accuracy values using 15 selected
nodes. It shows that the static analysis using feature categories
with accuracy higher than 0.6 has led to the highest perfor-
mance. Likewise, dynamic analysis using feature categories
with accuracy higher than 0.7 achieved the highest perfor-
mance. Therefore, static analysis with 3 feature categories,
namely the clustering coefficient, node neighbor’s degree,
and the page rank, was the best-selected feature categories
with the highest performance. For dynamic analysis, on the
other hand, the skewness in clustering coefficient (CC-S),
kurtosis in clustering coefficient (CC-K), entropy in clustering
coefficient (CC-SE), mean in degree centrality (DC-M), en-
tropy in betweenness centrality (BC-SE), and entropy in node
neighbor’s degree (NND-SE) were the top 6 dynamic feature
categories with the highest performance.

Figure 4c shows the result of classification performance
using the best-selected feature categories (3 feature categories
in static and 6 feature categories in dynamic analyses, respec-
tively) using the 15 selected nodes. As can be seen, the best
accuracies for the static and dynamic analyses were 88.0%
and 91.5%, respectively.

The ROC curves of the classifiers in static and dynamic
analyses using all feature categories of the top 15 ranked
nodes (best number of selected nodes) are shown in Fig. 5.
The area under the ROC (AUC) for the SVM classifiers based
on the static and dynamic features was calculated as 86% and
91%, respectively. The AALROIs and the relative importance
of the top-five ranked nodes in static and dynamic selected
feature categories are shown in Tables 4 and 5.

Discussion

In this paper, we compared the analyses of static and dynamic
functional connectivity for the application of lateralizing TLE
patients. We proposed graph-based quantitative metrics for
the determination of the laterality for the left and right TLE
patients using both static and dynamic analyses. The feature

Table 2 Result of static and
dynamic graph characteristics
analysis

Graph
measures

Clustering
coefficient

Degree
centrality

Betweenness
centrality

Node
neighbor’s
degree

Closeness
centrality

Page
rank

Static L = R L > R L < R L = R L > R L = R

Dynamic L < R L > R L < R L < R L > R L = R
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space of graph measures of each time window in the dynamic
analysis was converted to statistical representation to over-
come the “curse of dimensionality.” A feature selection meth-
od based on RF was developed to deal with the problem of
over-fitting. All findings demonstrated the importance of the
dynamic analysis approach, in particular, the clustering coef-
ficient and Shannon entropy measures, in the development of
biomarkers for TLE lateralization.

Based on the static analysis, neither the clustering coeffi-
cient nor the node neighbor’s degree and page rank showed a
significant difference between the two TLE groups using sta-
tistical analysis. However, based on dynamic connectivity
analysis, except for page rank, they all showed significant
differences. Therefore, dynamic functional connectivity anal-
ysis was demonstrated as a more powerful technique to char-
acterize the brain network and its laterality in cases of TLE.

The degree centrality, betweenness centrality, and close-
ness centrality are common graph measures for fMRI connec-
tivity analysis [37, 39, 45]. The page rank also is a variant of
eigenvector centrality that has been used in brain connectivity
and epilepsy cases in previous studies [27, 46, 47]. The world-
wide web, as well as the human brain, would exhibit small-
world properties suggesting that an algorithm that is quite
effective as a part of a search engine may also be efficient in
analyzing network properties in the human brain. The page
rank did not make a significant difference in left TLE and right
TLE groups based on our statistical analysis both in static and

dynamic approaches, but this graph measure provided the
highest classification rate in the static analysis which can be
due to the statistical analysis applies a linear method for com-
paring two groups, but an SVM classifier applies a nonlinear
kernel for separating two groups. These results show that the
page rank is a complex feature suitable for connectivity anal-
ysis in the brain as a complex system.

Our classification results based on the static analysis
showed that the node neighbor’s degree has superior accuracy
compared with the degree centrality, betweenness centrality,
and closeness centrality and also this graph metric is one of the
selected feature categories in dynamic analysis, stressing that
the node neighbor’s degree can be used as a robust feature for
lateralization of TLE. The clustering coefficient is another
most commonly used graph metrics in functional connectivity
analysis in TLE [36, 43, 48, 49]. This graphic metric was one
of the three selected feature categories in static analysis and
based on the dynamic analysis our results showed that the
clustering coefficient has a superior role compared to the de-
gree centrality, betweenness centrality, and the node neigh-
bor’s degree in the selection of the best feature categories.
This suggests that the clustering coefficient is an appropriate
graph measure in dynamic analysis for TLE lateralization. Our
analysis of the time trend of dynamic graph metrics showed
that the clustering coefficient and betweenness centrality met-
rics can lateralize the left and right TLE patients, which em-
phasizes the advantage of the dynamic over the static analysis.

Fig. 2 Accuracy of classification
using static feature categories for
the different number of selected
nodes. SN, selected nodes; CC,
clustering coefficient; DC, degree
centrality; BC, betweenness
centrality; NND, node neighbor’s
degree; CNS, closeness centrality;
PR, page rank

Table 3 Time trend of dynamic graph characteristics

Graph measures Clustering coefficient Degree centrality Betweenness centrality Node neighbor’s degree Closeness centrality Page rank

Epileptogenic side Left Right Left Right Left Right Left Right Left Right Left Right

Time trend ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↑

↑ represents increase and ↓ represents a decrease
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Fig. 4 Comparison of static and dynamic classification accuracy using all
and best feature categories. a Classification accuracy for the 5 to 40 most
important nodes using all feature categories. Note that the classifier based
on the 15 selected nodes provides the best performance in static and
dynamic analyses with an accuracy of 82.0% and 88.5%, respectively.
b Result of classification using the selected feature categories associated

with multiple thresholds on accuracy values using 15 selected nodes. c
Classification performance using the best of selected feature categories (3
features in static and 6 features in dynamic analysis) in the 15 selected
nodes. This figure shows that the best achieved accuracies in the static and
dynamic analyses were 88.0% and 91.5%, respectively

Fig. 3 Accuracy of classification
using dynamic feature categories
for the different number of
selected nodes. SN, selected
nodes; CC, clustering coefficient;
DC, degree centrality; BC,
betweenness centrality; NND,
node neighbor’s degree; CNS,
closeness centrality; PR, page
rank; M, mean; V, variance; S,
skewness; K, kurtosis; SE,
Shannon entropy
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Most of the previous studies using the functional connectiv-
ity and machine learning approaches for lateralization of TLE
concentrate merely on the static functional connectivity or time
series for connectivity analysis [3, 37, 38, 50–52]. Extracting a
large amount of information from fMRI time series is one of the
main advantages of the dynamic functional connectivity analy-
sis, which may be dismissed in a static approach. However, the
poor interpretability and noisiness of the raw time series have
restricted the direct usage of dynamic estimates.

The importance of first- and second-order statistics in
extracting features from dynamic graphic features in under-
stated [53]. Our proposed approach was novel in the sense that
we investigated higher-order characteristic information from
the graph measures in dynamic analysis, proven to be more
resistant to noise and interpretability in machine learning ap-
proaches. Our results were in agreement with other studies
that applied higher-order statistics as a second level feature
extraction in dynamic connectivity analysis [54]. We showed
that the Shannon entropy measure may have more promising

outcomes in the classification task. This could be due to the
complexity of this feature over the mean, variance, skewness,
and kurtosis, which can capture more information content
from dynamic functional connectivity.

Our examination of multiple importance scores showed
that restricting the static and dynamic functional connectivity
assessments merely to the 3 and 6 best feature categories,
respectively, may increase the accuracy of machine learning
algorithms.

Previous studies have found that static functional connec-
tivity and its fluctuation over time specified abnormal func-
tional avidities in neurological disorders such as temporal lobe
epilepsy [3, 55–57]. Our results show that dynamic features
are more sensitive in the detection of abnormal epileptic avid-
ities compared with the static features. These findings are
summarized as follows based on top-ranked nodes using
best-selected feature categories in static and dynamic analysis.

In static analysis, the node neighbor’s degree of the left and
right gyrus rectus were within the top-ranked nodes. The gy-
rus rectus is a region with increased connectivity manifested
during interictal spikes [58]. We also observed that the clus-
tering coefficient in the right posterior cingulate gyrus and
right precuneus and the page rank in the left superior frontal
gyrus were other top-ranked nodes. Previous studies have also
reported these regions as practicable markers for the laterali-
zation of TLE patients [8].

Frontal regions were also previously reported as alternate
regions in TLE [3, 59]. Based on our findings, the frontal
regions including the inferior frontal gyrus (by both static
and dynamic analyses) were among the top-ranked nodes.
Our findings based on static analysis, in agreement with the
previous studies reporting the impaired networks in patients
with TLE [60], showed that the following regions constitute
the top-ranked nodes in the classification of L-TLE and R-
TLE within the specific functional networks:

Table 5 The top five ranked
nodes for the six best dynamic
features

Nodal rank CC_S CC-K CC_SE DC-M BC-SE NND-SE

1 FFG.L LING.R HES.L HIP.L MTG.L ROL.R

2 ORBsup.R REC.R TPOsup.R PCL.R ORBsupmed.L PCUN.R

3 CUN.L PHG.R AMYG.L IOG.L MOG.L FFG.L

4 ORBinf.L OLF.L PAL.L PCUN.L IFGtriang.R ITG.R

5 HIP.R AMYG.R ORBsup.L IPL.R IPL.R TPOmid.R

CC-S, skewness of clustering coefficient; CC-K, kurtosis of clustering coefficient; CC-SE, Shannon entropy of
clustering coefficient; DC-M, mean of degree centrality; BC-SE, Shannon entropy of betweenness centrality;
NND-SE, Shannon entropy of node neighbor’s degree; LING, lingual gyrus; REC, gyrus rectus; PHG,
parahippocampal gyrus; OLF, olfactory cortex; AMYG, amygdala; HIP, hippocampus; PCL, paracentral lobule;
IOG, inferior occipital gyrus; PCUN, precuneus; FFG, fusiform gyrus; ORBsupmed, superior medial frontal
gyrus; MTG, middle temporal gyrus; MOG, middle occipital gyrus; IFGtriang, inferior triangular frontal gyrus;
IPL, inferior parietal gyrus; ROL, Rolandic operculum; ITG, inferior temporal gyrus; TPOmid, middle temporal
gyrus; ORBinf, inferior orbitofrontal gyrus; ORBsup, superior orbitofrontal gyrus; CUN, cuneus; HES, Heschl
gyrus; TPOsup, superior temporal gyrus; AMYG, amygdala; PAL, pallidum; L, left hemisphere; R, right
hemisphere

Table 4 The top 5 ranked nodes in the clustering coefficient, node
neighbor’s degree, and page rank in the static connectivity analysis

Nodal rank Clustering coefficient Node neighbor’s degree Page rank

1 PCG.R REC.L MOG.R

2 DCG.L ANG.R CUN.R

3 PCUN.R IOG.L IOG.L

4 ORBinf.L SPG.L PreCG.R

5 PUT.L REC.R SFGdor.L

PCG, posterior cingulate gyrus; DCG, median cingulated gyrus; PCUN,
precuneus; ORBinf, inferior frontal gyrus; PUT, putamen; REC, gyrus
rectus; ANG, angular gyrus; IOG, inferior occipital gyrus; SPG, superior
parietal gyrus; MOG, middle occipital gyrus; CUN, cuneus; PreCG,
precental gyrus; SFGdor, superior frontal gyrus; L, left hemisphere; R,
right hemisphere
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1. The clustering coefficient of the left median cingulate and
the node neighbor’s degree of the angular gyrus in the
default mode network.

2. The page rank of the right cuneus and the right middle
occipital gyrus; and the page rank and node neighbor’s
degree of the left inferior occipital gyrus in the visual
network.

3. The node neighbor’s degree of the left superior parietal
and the page rank of the right precentral gyri in the
somatomotor network.

4. The clustering coefficient of the right posterior cingulate
gyrus and the left inferior orbitofrontal gyrus in the limbic
network [3].

In concordance with previous reports, our dynamic analy-
sis found the top-ranked nodes in the following regions that
can distinguish L-TLE and R-TLE withing the specific func-
tional networks:

1. The mean of degree centrality and the Shannon entropy of
betweenness centrality in the right inferior parietal, the
Shannon entropy of node neighbor’s degree in the right
middle temporal gyrus, the skewness of clustering coeffi-
cient in the right superior frontal gyrus, and the Shannon
entropy of clustering coefficient in the left superior frontal
gyrus in default mode network

2. The Shannon entropy of clustering coefficient in left
cuneus, the mean of degree centrality in the left inferior
occipital gyrus, and the Shannon entropy of between-
ness centrality in the left middle occipital gyrus in the
visual network

3. The mean of degree centrality in the right paracentral
lobule in the somatomotor network

4. The Shannon entropy of betweenness centrality in the
right inferior frontal gyrus in the attention network [60].

5. The skewness of clustering coefficient in the left inferior
orbitofrontal gyrus and left fusiform gyrus; entropy of
clustering coefficient in the right superior temporal gyrus;
the entropy of node neighbor degree in the left fusiform
gyrus in limbic Network [3].

Hippocampus and parahippocampal gyrus are among the
temporal regions altered in TLE [3, 53, 61–64]. Our findings
showed that left and right hippocampi would undergo alter-
ations in the mean of degree centrality and skewness of the
clustering coefficient, respectively. Furthermore, the right
parahippocampal gyrus underwent changes in kurtosis of the
clustering coefficient, which altogether make the top-ranked
nodes in dynamic analysis. Our results evidenced that the left
amygdala in the entropy of the clustering coefficient was one
of the top-ranked nodes in the dynamic analysis and supported
the previous findings that the amygdala may undergo changes
in TLE [12, 63, 65]. These findings showed that the dynamic
analysis could demonstrate more distinguishing regions in
terms of laterality, compared with the static analysis.

Our study had several limitations. First, our sample size
was relatively small (35 TLE cases), for which our findings
need to be validated using a larger sample size. Another lim-
itation is that healthy control subjects were not included in our
study. Previous studies showed a wide range of TLE alterna-
tions in brain functional networks between the normal group
and TLE subjects, some of which are similar in both left and

a ROC for static connectivity analysis b ROC for dynamic connectivity analysis

Fig. 5 The receiver operating characteristic curves (ROCs) for the
classification of patients with R-TLE and L-TLE using the top 15
ranked nodes in the static and dynamic connectivity analyses. a The

area under the ROC (AUC) was 86% when all static feature categories
were used for the classification. b The AUC was 91% when all dynamic
feature categories were used for the classification
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right TLE groups, yet different from the control healthy group
and were not examined in our study. Recruiting control sub-
jects in a future study may help in finding out more informa-
tion about the alterations in the nodal properties with regard to
TLE. The patients in the current study were investigated pre-
operatively and in some cases, there is no definitive diagnosis
of laterality of epilepsy. The use of postoperative data, if avail-
able, can eliminate this uncertainty.

Conclusion

We identified several differences in graph-based functional
connectivity in static and dynamic functional connectivity
schemes. We found that using dynamic functional connectiv-
ity analysis, the degree centrality and closeness centrality
showed greater values, and the clustering coefficient, be-
tweenness centrality, and node neighbor’s degree showed
smaller values in L-TLE, compared with the R-TLE.
Extracting new statistical features from the dynamic graph
measures accompanied by the utility of SVM classifiers, more
accurate results would be achieved compared with the static
analysis. Accounting for the non-stationarity characteristic of
the functional connectivity, the graph theoretical measures can
be a prerequisite tool in searching for potential connectivity-
derived lateralization markers in TLE.
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