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ABSTRACT

Missing areas in PET sinograms and severe image artifacts as 

a consequence thereof, still gain prominence not only in 

sparse-ring detector configurations but also in full-ring PET 

scanners in case of faulty detectors. Empty bins in the 

projection domain, caused by inter-block gap regions or any 

failure in the detector blocks may lead to unacceptable image 

distortions and inaccuracies in quantitative analysis. Deep 

neural networks have recently attracted enormous attention 

within the imaging community and are being deployed for 

various applications, including handling impaired sinograms 

and removing the streaking artifacts generated by incomplete 

projection views. Despite the promising results in sparse- 

view CT reconstruction, the utility of deep-learning-based 

methods in synthesizing artifact-free PET images in the 

sparse-crystal setting is poorly explored. Herein, we 

investigated the feasibility of a modified U-Net to generate 

artifact-free PET scans in the presence of severe dead regions 

between adjacent detector blocks on a dedicated high-

resolution preclinical PET scanner. The performance of the 

model was assessed in both projection and image-space. The 

visual inspection and quantitative analysis seem to indicate

that the proposed method is well suited for application on 

partial-ring PET scanners.

Index Terms— small animal PET, deep learning, gap 

correction, sparse detector configuration.

1. INTRODUCTION

Owing to its enriched quantitative capability, the 

applications of Positron Emission Tomography (PET) have 

expanded drastically during the last few years. The image 

quality and diagnostic confidence in PET studies depend 

heavily upon the number of true lines of response (LORs) 

captured during the scanning procedure. In the pursuit of 

higher sensitivity and improved image quality, a new 

generation of total-body PET scanners with a larger axial 

field-of-view and hence increased number of detectors have 

been considered both in clinical and preclinical research 

settings and are beginning to reach the market [1-3]. Despite 

a multitude of advantages, increasing the number of detector 

modules comes with several issues, the most common being 

is the increased design complexity and higher 

instrumentation/service cost particularly in the case of so-
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called bad detectors. Any deficiency in the detector modules 

appears as diagonal bins with zero counts in the sinogram, 

which ultimately deteriorates the quality of the reconstructed 

image [4, 5]. This problem is more pronounced in scanners 

with a limited number of detectors, such as small-bore 

devices dedicated for laboratory animal imaging, organ- 

specific PET imagers (brain, breast, and prostate imaging 

systems) with open/partial ring geometry, or novel prototype 

models with spacing blocks. Inter-block dead space, known 

as gap regions, generates a crisscross shape on sinograms 

resulting in low-quality PET images. Heretofore, various 

methods have been proposed to infer the unknown projection 

bins or to recover corrupted images. These include 

interpolation, model-based strategies [6], statistical 
reconstruction frameworks [7], dictionary learning [8], and 

other traditional techniques [9]. However, comparative 

studies both in image-space and projection-space 

demonstrated that the success of these algorithms is initially 

determined by the amount of missing data and the selection 

of the related parameters [10]. Although the majority of these 

methods perform well for small gap areas, most of them fail 

to recover artifact-free images at higher levels of sparsity 

[10]. Recently, deep neural networks have shown great 

promise in mitigating streak artifacts in sparse view 

computed tomography (CT) [11]. Nevertheless, it is 

becoming clear that, with few exceptions [12], there is a lack 
of research investigating the potential of deep learning (DL)- 

enabled artifact removal in sparse-ring PET configurations. 

Hence, in this work, we seek to address image quality 

degradation via an adopted U-Net framework in a preclinical 

PET scanner by modeling relatively large gaps with inactive 

detectors. Moreover, we assessed the performance of the 

proposed method for both projection-space and image-space 

implementation.

2. MATERIAL AND METHODS

2.1. Data acquisition

The data used in this work include 30 mice (30±10gr) 

PET scans acquired retrospectively using the small animal 

Xtrim PET scanner [13]. One hour prior to imaging, each 

animal was administered with an average activity of 300±50 

pCi of 18F-FDG and scanned for 10 minutes under anesthesia. 

Full-view sinograms were corrected for the delay, 

normalization [14], decay, out of field scatter (tail-fitting), 

and attenuation (using two-tissue class segmentation 

strategy). To mimic partially-sampled sinograms, the full- 

view sinograms were masked with a large gap pattern which 

was simulated by virtually setting the counts of two edge 

elements in each detector block to zero. For undersampled 

sinograms, the effect of gap was also modeled in the system 

matrix, and the reconstruction was performed using the 

OSEM algorithm with 5 iterations and 8 subsets. The 

resulting whole-body images consisted of 260 x 260 * 242 

volume matrices with 0.79 x 0.79 x 0.75 mm3 voxels. Prior

to training the network, images were cropped to 128 x 128 x 

85 volumes to discard the background voxels and empty 

slices. The resulting dataset (30 scans x 85 slices/scan) was 

split into 2000 samples for training, 270 for the validation, 

and 280 as the final test for evaluating the performance of our 

proposed approaches. The number of training samples was 

enhanced by horizontal and vertical flipping. Since the gap 

effect is not identical all over the scanner’s field-of-view 

(FOV), neither translation nor rotation was used for data 

augmentation.

2.2. U-Net architecture

Figure 1 schematically depicts the proposed U-Net 

model implemented through Keras and Tensorflow libraries. 

The model is organized into three subsections: (i) a 

contracting component to encode the input image by 

downsampling the feature map, (ii) a bottleneck section, and 

(iii) an expanding component to synthesize the target truth by 

upsampling the extracted features. Both encoder and decoder 

subnets consisted of three stages with two operational blocks 

in each stage, whereas the bottleneck section included three 

blocks. Each block has a batch normalization (BN) operation 

and a Leaky rectified linear unit (Leaky-ReLU) after each 3 

x 3 convolution. Spatial down-scaling and up-scaling are 

accomplished using strided convolutions and the 

interpolation, respectively. Skip connections are integrated to 

concatenate the high-level features from the encoder side of 

the network to the decoder part. Like the first layer, the final 

layer is a 1 x 1 convolution for mapping the output prediction. 

As demonstrated in figure 2, in the image-space 

implementation, our network uses the advantages of residual 

learning in which the network struggles to learn the 

residual/difference image (artifacts) instead of direct 

mapping between input and clear images [11]. However, in 

the sinogram-domain implementation, we directly map the 

corrupted sinogram to its full-view counterpart, and then the 

predicted sinogram was reconstructed using the method 

described in section 2.1. The network was trained for 200 

epochs (early stopping rule was implemented to terminate the 

training when validation loss was not updated after 25 

epochs) to minimize the mean absolute error between 

network prediction and the desired output using the Adam 

optimizer with a non-decaying learning rate of 10-4.

Fig. 1. The structure of our modified U-Net model.
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2.3. Evaluation metrics and statistical analysis

All metrics were computed with respect to original 

artifact-free images, referred to as ground truth images (GI). 

Moreover, the relative error (RE) between AI/GI, PI/GI, and 

PS/GI were calculated for different organs including the 

brain, heart, intestine, liver as well as the whole body. For 

statistical analysis, paired-sample t-tests were conducted to 

compare the objective metrics (NRMSE, PSNR, and SSIM) 

between each group of AI/PI, AI/PS, and PI/PS. The 

difference is considered significant with a p-value < 0.05.

Fig. 2. Schematic diagram of sinogram-space (top) and 

image-space (bottom) implementations.

5. RESULTS

Figure 3 illustrates an example of artifact-corrupted 

unseen test dataset, artifact-free original PET, and predicted 

clear images in both domains along with pixel-wise relative 

difference images (known as SUV bias maps). Comparing to 

artifact-corrupted images, the predicted images in both 

domains demonstrated marked improvements in quality and 

quantitative accuracy. Besides visual inspection, this 

improvement is exhibited by larger PSNR/SSIM values and 

smaller NRMSE for corrected images, as summarized in 

Table 1. Regarding the statistical analysis, all metrics were 

improved significantly for the results predicted either in 

sinogram or image-space. However, these improvements are 

slightly more obvious for the sinogram-space gap correction. 

However, no significant difference was found between the PI 

and PS. From Figure 4, our proposed method in both domains 

leads to a relative SUV error of less than 5% in almost all 

body sections.

Fig. 3. Representative images from unseen test data. From 

left to right: Coronal, sagittal, transverse view from heart, and 

transverse view from kidneys. (A) Ground truth, (B) Image-

domain prediction, (C) Sinogram-domain prediction, (D) 

artifact-corrupted image, (E) Bias maps for B, and (F) for C.

Table 1. Image quality metrics for the test dataset.

Dataset NRMSE PSNR SSIM
AI 0.12±0.03 37.98±4 0.93±0.03

PS 0.051± 0.01 45.87±5 0.98±0.01

PI 0.054±0.009 44.83±5.1 0.97±0.01

P-value(AI/PS) 0.0022* 0.003* 0.0226*

P-value (AI/PI) 0.0012* 0.0019* 0.0225*

P-value (PI/PS) 0.1081 0.0824 0.0694

6. DISCUSSION AND CONCLUSION

While most gap correction strategies were implemented 

in the projection domain, we sought out to study the 

feasibility of a DL-based approach in mitigating high- 

frequency artifacts caused by under-sampled projections in
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preclinical 18F-FDG PET images and compared the outcomes 

with those of projection-based learning. Visual inspection 

and quantitative analysis showed that the predicted artifact- 

free images either in the image (PI) or projection-space (PS) 

have superior overall image quality in contrast to the ones 

reconstructed from incomplete views (AI). However, 

projection-based learning provides quantitatively smaller 

error which could be attributed to relatively more information 

in the sinogram mode presentation [15]. The disadvantage is 

that projection domain learning is computationally more 

demanding compared to image learning (~ 5 times for our 

study). Quantitation errors for image-based learning are more 

noticeable for the regions lying in the proximity of the FOV 

center (e.g., hallow regions with low uptake pattern in the 

abdomen or some small defects on the heart). In line with 

previous studies [12], our results proved that the DL-based 

scheme could be leveraged to synthesize high-quality and 

quantitatively accurate PET images on scanners with sparse 

detector configuration. However, to investigate the potential 

and advantages of DL-based gap correction, we plan to 

compare the results of our findings with those of rival 

methods in the future.

Absolute relative error

Brain Heart Liver Intestine Kidney Whole

Body

Fig. 4. Mean absolute relative error for different organs and 

whole-body for unseen test sets. Error bars indicate standard 

deviation.
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