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Abstract– Statistical variability of the PET data pre-corrected for 

random coincidences or acquired in sufficiently high count rates 

can be approximated by a Gaussian distribution, which results in 

a penalized weighted least-squares (PWLS) cost function. In this 

study, a proximal preconditioned gradient algorithm accelerated 

with ordered subsets (PPG-OS) is proposed for the optimization 

of the PWLS function, while addressing its two challenges 

encountered by previous algorithms such as separable 

paraboloidal surrogates accelerated with ordered-subsets (SPS-

OS) and preconditioned conjugate gradient. First, the penalty 

and the weighting matrix of this function make its Hessian matrix 

ill-conditioned; thereby surrogate functions end up with high-

curvatures and preconditioners would poorly approximate the 

Hessian matrix. The second challenge arises when using non-

smooth penalty functions such as total variation (TV), which 

makes the PWLS function not amenable to optimization using 

gradient-based algorithms. To deal with these challenges, we used 

a proximal point method to surrogate the PWLS function with a 

proxy, which is then split into a preconditioned gradient descent 

and a proximal mapping associated with the TV penalty. A dual 

formulation was used to obtain the proximal mapping the TV 

penalty and also its smoothed version, i.e. Huber penalty. The 

proposed algorithm was studied for three different diagonal 

preconditioners and compared with the SPS-OS algorithm. Using 

simulation studies, it was found that the proposed algorithm 

achieves a considerably improved convergence rate over the 

state-of-the-art SPS-OS algorithm. Bias-variance performance of 

the algorithm was th evaluated for the preconditioners. Finally, 

the proposed PPG-OS algorithm was assessment using clinical 

PET data. 
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I. INTRODUCTION 

ODEL-based iterative image reconstruction algorithms 

can substantially improve the quality and quantitative 

accuracy of Positron Emission Tomography (PET) images. In 

fact, model-based algorithms can explicitly account for the 

physical and statistical processes involved in emission 

tomography and thus allow for a rich description of the image 

formation process leading to diagnostic and quantitatively 

more reliable images. The inherent statistical variability of 

prompt PET measurements is best described by the Poisson 

probability distribution, however, when the measurements are 

corrected for random coincidences and/or acquired in a high 

count rate, they are no longer Poisson distributed and their 

statistics can be described by a shifted Poisson model [1] or 

for practical advantages by Gaussian distribution, which 

approximates the Poisson distribution to second order. The 

quadratic approximation of the Poisson distribution or 

equivalently making use of the Gaussian model leads to a 

weighted least squares data-fitting term, which when 

augmented by a penalty or regularizer, to penalize deviations 

from an a priori knowledge, results in a penalized weighted 

least-squares (PWLS) cost function [2]. 

Several efficient iterative algorithms have been proposed 

for optimizing this cost function such as separable 

paraboloidal surrogates accelerated with ordered-subsets 

(SPS-OS), block coordinate descent (BCD) and 

preconditioned conjugate gradient (PCG) methods [3, 4]. The 

PCG-type algorithms are of special interest, because they 

converge rapidly and update all pixels of the solution 

simultaneously, and hence can be used for parallelization on 

multi-core computers. However, there are two challenges 

encountered when developing optimization algorithms for the 

PWLS cost function. First, the ill-conditioning of its second-

order derivative (Hessian), due to the weighting matrix (see 

eq. 5) and the penalty function. As a result of ill-conditioning, 

the surrogate functions end up with high curvatures [5] and 

gradient-based algorithms with small step-sizes, leading to 

slow convergence. In addition, the preconditioners, used to 

improve the condition number of the Hessian and thus to 

speed up the convergence, would poorly act on the resulting 

ill-conditioned Hessian matrix. The second challenge arises 

when using non-smooth penalty functions such as total 

variation (TV) and wavelet-based analysis penalties, which 

use the ℓ1 norm of the gradient and the wavelet coefficients of 

the image solution. As these penalty functions are not 

continuously differentiable, the resulting PWLS cost functions 

are not amenable to optimization using conventional gradient-
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based algorithms. To deal with these challenges, some special 

shift-invariant weighting matrices and preconditioners have 

been proposed in literature, however, with some assumptions 

and computational complexities [3, 6]. A conventional 

approach to address the non-differentiability of the TV penalty 

is to smooth the ℓ1 norm with a Huber norm. However, these 

challenge has been recently addressed using the variable 

splitting and split Bregman-type schemes, which have 

emerged as computationally appealing approaches [7, 8]. In 

[9], the variable splitting and alternating direction 

minimization techniques are used to reduce the optimization 

problem into independent sub-problems toward addressing the 

above mentioned challenges.  

To deal with the ill-conditioning of Hessian matrix due to 

the penalty function and the optimization issue arising from 

the non-smooth TV penalty function, in this study, we 

followed a proximal point technique to surrogate the PWLS 

cost function with a proxy function. The proxy was then split 

into a preconditioned gradient descent (accelerated with 

ordered subsets) and a proximal mapping associated with the 

TV regularizer. The performance of the proposed algorithm 

was studied for three different preconditioners and compared 

was the SPS-OS algorithm in a simulation study. Finally, the 

proposed algorithm was applied for image reconstruction of 

clinical PET measurements. 

II. PROBLEM FORMULATION 

Let 𝑥 ∈ ℝ 
𝑁  be a true activity distribution being observed by 

a PET imaging system, described by the geometric system 

matrix 𝐺 ∈ ℝ𝑀×𝑁 . Under Poisson photon counting statistics 

(no dead time or any corrections), the measured prompt 

coincidences, 𝑦𝑝 ∈ ℤ𝑀  is a Poisson-distributed random 

variable described by: 

𝑦𝑖
𝑝
≈ Poisson 𝑛𝑖𝑎𝑖  𝐺𝑖𝑗 𝑥𝑗

𝑁
𝑗=1 + 𝑟 𝑖 + 𝑠 𝑖 ,   (1) 

where 𝑛, 𝑎, 𝑠  and 𝑟 ∈ ℤ𝑀  account for detector efficiency, 

photon attenuation, and expected scatter and random 

coincidences, respectively. The negative Poisson log-

likelihood for observing the prompts 𝑦𝑝  is then given by: 

Φ 𝑥 =  ℎ𝑖 [𝐺𝑥]𝑖 
𝑀
𝑖=1 , 

ℎ𝑖 𝑦𝑖 =  𝑛𝑖𝑎𝑖𝑦𝑖 + 𝑟 𝑖 + 𝑠 𝑖 − 𝑦𝑖
𝑝

log 𝑛𝑖𝑎𝑖𝑦𝑖 + 𝑟 𝑖 + 𝑠 𝑖 ,    (2) 

The true object distribution is then estimated by the 

minimization of the above log-likelihood. When the number of 

counts is sufficiently high or the measurements are pre-

corrected for randoms and scatters, ℎ𝑖 𝑦𝑖  can be 

approximated to its second order, resulting to weighted least 

squares cost function [10, 11]. Applying a second-order 

Taylor’s expansion to ℎ𝑖 𝑦𝑖  around the estimate of ith line of 

response, 𝑦 𝑖 , yields: 

 ℎ𝑖 𝑦𝑖 ≈ ℎ𝑖 𝑦 𝑖 + ℎ 𝑖 𝑦 𝑖  𝑦𝑖 − 𝑦 𝑖 +
1

2
ℎ 𝑖(𝑦 𝑖)(𝑦𝑖 − 𝑦 𝑖)

2,(3) 

where ℎ 𝑖 𝑦𝑖 = 𝑛𝑖𝑎𝑖[1 −
𝑦𝑖
𝑝

𝑛 𝑖𝑎𝑖𝑦𝑖+𝑟 𝑖+𝑠 𝑖
] , ℎ 𝑖 𝑦𝑖 = 𝑦𝑖

𝑝
 

𝑛 𝑖𝑎𝑖

𝑛 𝑖𝑎𝑖𝑦𝑖+𝑟 𝑖+𝑠 𝑖
 

2
. 

It is worth noting here that in the E-step of the standard 

OSEM reconstruction algorithm, the function ℎ𝑖 𝑦𝑖  is also, in 

effect, approximated by an easy-to-optimize surrogate 

function [4]. Using the estimate 𝑦 𝑖 = (𝑦𝑖 − 𝑟 𝑖 − 𝑠 𝑖)/𝑛𝑖𝑎𝑖  in 

(3), we then arrive at: 

                  ℎ𝑖 𝑦𝑖 ≈ 𝑦𝑖
𝑝
− 𝑦𝑖

𝑝
log(𝑦𝑖

𝑝
) +

1

2

𝑛𝑖
2𝑎𝑖

2

𝑦
𝑖
𝑝  𝑦𝑖 − 𝑦 𝑖 

2 (4) 

where 𝑦  is in fact a fully pre-corrected emission sinogram 

whose statistics no longer follows Poisson distribution due to 

randoms and scatters subtraction. Note that this second-order 

approximations of the ℎ𝑖 𝑦𝑖  in effect results in a negative 

Gaussian log-likelihood. By dropping terms independent of 𝑦𝑖  

in (4), the Poisson log-likelihood therefore reads the following 

weighted least squares cost function: 

𝜙 𝑥 =
1

2
 𝑤𝑖([𝐺𝑥]𝑖
𝑀
𝑖=1 − 𝑦 𝑖)

2 ,    𝑤𝑖 =
𝑛𝑖

2𝑎𝑖
2

𝑦
𝑖
𝑝            (5) 

When the prompt emission sinogram is not available, the 

prompt coincidences can be estimated from the pre-corrected 

sinogram 𝑦 , thereby the weights 𝑤𝑖  in (5) are obtained by: 

𝑤𝑖 = 𝑛𝑖
2𝑎𝑖

2/ max 1,𝑛𝑖𝑎𝑖𝑦 𝑖 + 𝑟 𝑖 + 𝑠 𝑖 .               (6) 

In the above equation, we threshold the minimum of the 

estimated prompts to one count; this approach avoids division 

by zero, and also ensures the non-negativity of the resulting 

weights. To control noise in the estimation of 𝑥 and generally 

to penalize estimates deviating from an a priori knowledge, 

the cost function in (5) can be augmented by a penalty or 

regularizer, 𝑅(𝑥), which results in the following penalized 

weighted least-squares (PWLS) cost function [12]: 

          𝜓 𝑥 =
1

2
 𝐺𝑥 − 𝑦  𝑊

2 + 𝛽𝑅(𝑥), (7) 

where 𝑊 = diag{𝑤𝑖} and 𝛽 > 0 is a regularization parameter 

that controls the balance between the fidelity of 𝐺𝑥 to 

measured data and the regularity of 𝑥 to our prior knowledge.  

In this study, we are interested in a three-dimensional 

isotropic total variation (TV) regularizer in order to impose a 

smoothness prior knowledge in the reconstruction of a volume 

image. The TV regularizer effectively suppresses noise while 

preserving sharp edges [13]. This feature makes it particularly 

attractive for PET-guided tumor volume delineation and shape 

identification. A 3D isotropic TV regularizer is defined as: 

𝑅TV  𝑥 =  𝐷𝑥 1 =   [𝐷𝑥]𝑗  
𝑁
𝑗=1                    (8) 

which is the ℓ1 norm of the discrete gradient of 𝑥. 𝐷 =
[𝐷𝑣

𝑇 ,𝐷ℎ
𝑇 ,𝐷𝑎

𝑇]𝑇 ∈ ℝ3𝑁×𝑁  is a derivative matrix composed of 

first-order finite difference matrices (in horizontal, vertical 

and axial directions) and  [𝐷𝑥]𝑗  = ([𝐷𝑣𝑥]𝑗
2 + [𝐷ℎ𝑥]𝑗

2 +

[𝐷𝑎𝑥]𝑗
2)1/2, [𝐷𝑥]𝑗 ∈ ℝ

3. Generally, the ℓ𝑝  norm of an N-

length vector is defined as: 

 𝑥 𝑝 =  
  𝑥1 

𝑝 + ⋯+  𝑥𝑁 
𝑝 1/𝑝 ,   1 ≤ 𝑝 < ∞

max  𝑥1 ,…  𝑥𝑁   ,               𝑝 = ∞        
          (9) 

As the TV regularizer is non-smooth and thus edge preserving, 

it sometimes results in artificially flat regions (stair-casing 

effect) in the reconstructed images. Furthermore, it is not 

differentiable at points where 𝐷𝑥 = 𝟎. As a result, the PWLS 

cost function is amenable to optimization using gradient-based 

approaches. Hence, the ℓ1 norm in (8) is usually smoothed by 

the Huber potential function, 𝜑H , resulting in a Huber (or 

smoothed TV) regularizer as follows: 

  𝑅H 𝑥 =  𝜑H ( [𝐷𝑥]𝑗  )
𝑁
𝑗=1 ,   𝜑H 𝑡 =  

𝑡 − 𝛿/2,   𝑡 ≥ 𝛿

𝑡2/2𝛿,      𝑡 < 𝛿
  (10) 

where δ > 0 controls the edge-preserving effect of the 

resulting penalty function. Note that for δ = 0, the Huber 

regularizer reduces to the TV one. 
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III. PROPOSED ALGORITHM 

To optimize the PWLS function in (7), we follow a 

proximal point method [14, 15], through which one add a 

proximal penalty term to the original cost function at each 

iteration, thereby an easy-to-optimize proxy or surrogate 

function, 𝜓(𝑥, 𝑥𝑘), is obtained. The optimization of the proxy 

guarantees that of the original cost function. Hence, the 

solution can be iteratively estimated by: 

𝑥𝑘+1 = argmin𝑥∈ℝ+
𝑁𝜓 𝑥, 𝑥𝑘 , 

                       𝜓 𝑥, 𝑥𝑘 ≜ 𝜓 𝑥 +
1

2
 𝑥 − 𝑥𝑘 𝐿

2  (11) 

where 𝐿 = 𝜋𝐼𝑀 − 𝐺𝑇𝑊𝐺 is a positive definite matrix, in 

which 𝐼𝑀  is an 𝑀 × 𝑀 identity matrix, 𝐺𝑇𝑊𝐺 is the Fisher 

information term of the Hessian of the PWLS functional, i.e. 

ℋ = ∇2𝜓 𝑥 = 𝐺𝑇𝑊𝐺 + 𝛽∇2𝑅(𝑥) and 𝜋 satisfies 𝜋 ≥
𝜆max (𝐺𝑇𝑊𝐺)/2.  λmax  ∙  denotes the largest eigenvalue. 

By some algebra we rewrite the proxy in Eq. (11) as 

follows: 

𝜓 𝑥, 𝑥𝑘 = 𝜙 𝑥𝑘 +  𝑥 − 𝑥𝑘 𝑇∇𝜙 𝑥𝑘 +
𝜋

2
 𝑥 − 𝑥𝑘 

 

2
+  𝛽𝑅 𝑥  (12) 

where ∇𝜙 𝑥𝑘 = 𝐺𝑇𝑊 𝐺𝑥𝑘 − 𝑦  . Completing the square in 

Eq. (12), we then arrive at: 

   𝜓 𝑥, 𝑥𝑘 =
𝜋

2
 𝑥 −  𝑥𝑘 −

1

𝜋
∇𝜙 𝑥𝑘   

2

−
1

2𝜋
 ∇𝜙 𝑥𝑘  

2
+

∇𝜙 𝑥𝑘 +  𝛽𝑅 𝑥 .  (13) 

By this approach, one can split the optimization problem in 

Eq. (11) into two steps i) a gradient descent and ii) a proximal 

mapping associated with the regularizer 𝑅(𝑥): 

𝑥 = 𝑥𝑘 − 𝜏∇𝜙 𝑥𝑘 ,                     (14) 

              𝑥𝑘+1 = argmin𝑥∈ℝ+
𝑁

1

2
 𝑥 − 𝑥   

2 + 𝜏𝛽𝑅 𝑥 + C (15) 

where 𝜏 = 1/𝜋 is a step size and C is a constant. This is 

known as the proximal gradient algorithm in the literature [16, 

17]. To improve the overall convergence rate of the algorithm, 

we upgrade the step (14) to a preconditioned gradient (PG) 

descent algorithm accelerated with ordered subsets; thereby 

the PPG-OS algorithm is derived. 

A. Preconditioning and Optimal Step Size 

Several preconditioners have been proposed in literature 

such as:  𝑃1 = diag{𝐻𝑖𝑖 }
−1, which uses the inverse of the 

diagonal elements of the Hessian matrix [18], 𝑃2 =
diag 𝐻𝟏 −1, where 𝟏 ∈ ℝ𝑁  and 𝑃3

𝑘 = diag (𝑥𝑘 + 𝜖)/
𝐺𝑇𝟏 −1, where ϵ > 0 ensures the positivity of this EM-type 

preconditioner and 𝟏 ∈ ℝ𝑀[19]. The preconditioner P2 was 

inspired from the De Pierro’s convexity method to the data 

fidelity term (see e.g. [20]). Other complicated preconditioners 

such as Fourier-based ones have also proposed in [3, 21]. In 

this study, we utilized the three above-mentioned diagonal 

preconditioners. As we extend step (14) to a preconditioned 

gradient descent, the step size 𝜏 should satisfy: 0 < 𝜏 ≤
2/𝜆max (𝑃𝐺𝑇𝑊𝐺). Proof follows from Theorem 8.3 in [22]. 

To achieve the maximum amount of decrease of the cost 

function, the step size in Eq. (14) can be obtained by the 

following maximization: 

                     𝜏𝑘 = argmax𝜏≥0𝜙 𝑥
𝑘 + 𝜏𝑃∇𝜙(𝑥𝑘 ) (16) 

whereby, an optimal step length can be obtained by: 

 𝜏𝑘 = −
(𝑃∇𝜙(𝑥𝑘 ))𝑇∇𝜙(𝑥𝑘)

(𝑃∇𝜙(𝑥𝑘 ))𝑇𝐺𝑇𝑊𝐺(𝑃∇𝜙(𝑥𝑘 ))                           (17) 

 

 

ALGORITHM 1: TV-PPG ALGORITHM 

Initialize: 𝑥0 = 𝑥1 = 𝟎, 𝑧0 = 𝐷𝑥0, 𝛿,𝛼,𝛽,𝜎 =
𝛽

𝛼
,𝑇, 𝑘 = 𝑛 = 0 

While   𝑥𝑘+1 − 𝑥𝑘 / 𝑥𝑘  ≥ 𝜂 do     

1. ∇Φ = 𝐺𝑇𝑊(𝐺𝑥 
𝑘 − 𝑦 ) 

2. 𝑝𝑘 = 𝑃∇Φ               

3. 𝜏𝑘 = − 𝑝𝑘 𝑇∇Φ/ 𝑝𝑘 𝑇𝐺𝑇𝑊𝐺 𝑝𝑘   

4. 𝑥𝑘+1 = 𝑥𝑘 −  𝜏𝑘𝑝𝑘 . 

5. 𝑘 = 𝑘 + 1.   

6.  𝑥  ⟵ 𝑥𝑘+1. 

7. While 𝑛 ≤ 𝑇 do 

a. 𝑥𝑛 =  𝑥  − 𝛽𝐷𝑇𝑧𝑛  + 

b. 𝑏 =
1

δ+𝜎
(𝜎𝑧𝑛 + 𝐷𝑥𝑛) 

c. 𝑧𝑖
𝑛+1 = proj  ∙ ∞≤1  𝑏𝑖  

d. 𝑛 = 𝑛 + 1 

8. 𝑥𝑘+1 ⟵ 𝑥𝑛  

Output:  𝑥 ⟵ 𝑥𝑘+1 

 

B. Proximal mapping 

In order to solve the problem (15) for the non-continuously 

differentiable TV penalty, we make use of its Legendre-

Fenchel dual formulation [23]. Generally, an ℓ𝑝  norm can be 

equivalently defined as: 

 𝑥 𝑝 = maxz∈𝐷{𝑧𝑇𝑥} ,𝐷 = {𝑧:  𝑧 𝑞 ≤ 1}             (18) 

where the dual feasible set 𝐷 is the unit ball of an ℓ𝑞  norm and 

𝑞 satisfies 1/𝑞 + 1/𝑝 = 1 [24]. As the Huber penalty 

function generalizes the TV one, we re-define the Huber 

regularizer in duality context by [25]: 

𝑅𝐻 𝑥 = max𝑧∈𝑄{𝑧𝑇𝐷𝑥} −
𝛿

2
𝑧𝑇𝑧,  

                             𝑄 =  𝑧: 𝑧 ∈ ℝ3𝑁 ,  𝑧 ∞ ≤ 1  (19) 

where 𝑄 is an ℓ∞  unit ball and 𝛿 = 0 reduces the Huber 

penalty to the TV one. The second term in the r.h.s. of (19) in 

fact accounts for the smoothness of the Huber penalty. 

 Substituting (19) in (15), we arrive at the following min-

max problem: 

    min𝑥 max𝑧∈𝑄 𝑆 𝑥, 𝑧 , 

                             𝑆 ≜
1

2
 𝑥 − 𝑥   

2+𝛽(𝑧𝑇𝐷𝑥 −
𝛿

2
𝑧𝑇𝑧), (20) 

In brief, we then exchange the order of the min and max 

problems, minimize 𝑆 with respect to 𝑥 and substitute the 

resulting solution 𝑥 = 𝑥 − 𝛽𝐷𝑇𝑧 into the max problem. We 

address the non-negativity on this solution later within the 

body of the algorithm (Algorithm 1, step 7a). By 

multiplication with −1/𝛽2, we then cast the maximization 

into the following minimization problem:  

min𝑧∈𝑄𝑀 𝑥 , 𝑧 , 𝑀 ≜
1

2
𝑧𝑇𝐷𝐷𝑇𝑧−

1

𝛽
𝑧𝑇𝐷𝑥 −

𝛿

2𝛽
𝑧𝑇𝑧       

=   
1

2
 𝐷𝑇𝑧 − 𝑥 /𝛽 2

2 +
𝛿

2𝛽
 𝑧 2

2 + 𝐶                 (21) 

To find the solution of the above constrained minimization, 

we follow the proximal point method by adding the proximal 

penalty 
1

2
 𝑧 − 𝑧𝑛 Σ

2  to 𝑀 𝑥 , 𝑧 , where Σ =  𝛼𝐼3𝑁 
−1 − 𝐷𝐷𝑇 , 

𝐼3𝑁  is a 3𝑁 × 3𝑁 identity matrix and the parameter 𝛼 should 

satisfy 0 < 𝛼 ≤ 2/𝜆𝑚𝑎𝑥 (𝐷𝐷𝑇). By some algebra, dropping 

constant terms and letting 𝜎 = 𝛽/𝛼, the minimizer of problem 

(11) then iteratively reads: 
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𝑧𝑛+1 = argmin𝑧∈𝑄  
1

2
𝑧𝑇𝑧 − 𝑏𝑇𝑧 ,  

𝑏 =
1

δ+𝜎
 𝜎𝑧𝑛 + 𝐷 𝑥 − 𝛽𝐷𝑇𝑧𝑛                      (22) 

One can show that the solution of the above problem is the 

vector 𝑏 projected into the constraint set 𝑄, i.e.  

𝑧𝑗
𝑛+1 = proj  ∙ ∞≤1  𝑏𝑗  .                 (23) 

To obtain the projection into an ℓ∞  unit ball, we exploit the 

Moreau’s decomposition defined for projectors as [26]: 

𝑏𝑗 = proj  ∙ 1≤1  𝑏𝑗  + proj  ∙ ∞≤1  𝑏𝑗               (24) 

where the projection into an ℓ1 unit ball is obtained by a soft-

thresholding operator with a unit threshold [26]. Hence, 

proj  ∙ ∞≤1  𝑏𝑗  = 𝑏𝑗 −  
𝑏𝑗 − sign 𝑏𝑗  ,  𝑏𝑗  > 1

0,                        𝑏𝑗  ≤ 1 
      (25) 

Algorithm 1 summarizes the proposed algorithm. In this study, 

we made use of power iteration method to iteratively 

approximate the largest eigenvalue of the matrix 𝐷𝐷𝑇  [27], 

thereby one can declare 𝛼 ≤ 2/12. To improve the 

convergence rate of the proposed PPG algorithm, we 

accelerated it with ordered subsets; thereby a PPG-OS 

algorithm was derived. 

IV. RESULTS AND DISCUSSION 

A. Phantom simulation 

To qualitatively evaluate the performance of the proposed 

algorithm with respect to a ground truth, we performed PET 

acquisition in a simulated scanner with parallel strip-integral 

geometry (4.06 mm strip width, 130 radial samples, 204 

angular samples uniformly spaced over 180 degrees). The 

system matrix describing this scanner was generated using the 

Image Reconstruction Toolbox (IRT) by Fessler et. al. [28]. A 

2D 128×128 true object distribution together with its 

associated attenuation map was derived from the IRT’s 

standard test image, which is based on the anthropomorphic 

Zubal phantom. The emission ground truth was reconstructed 

for 5 noise realizations in a simulated PET study for 5×10
6
 

total counts and 10% random and scatters coincidence rates. 

Fig. 1(a)–1(c) show the true image, the PET image of a give 

noise realization reconstructed by filtered back-projection and 

the attenuation map of emission data, respectively. The 

proposed PPG-OS algorithm was objectively compared with 

the state-of-the-art SPS-OS algorithm using 6 ordered subsets 

and for the preconditioners 𝑃1, 𝑃2 and 𝑃3
𝑘 . 

 

 
Fig. 1. (a) The true emission image simulating radiopharmaceutical uptake 

in a mediastinal lymphoma distribution. (b) The attenuation map used for 
attenuation correction of emission data, composed of linear attenuation 

coefficients of lung, soft tissue and bone (0.002, 0.0096 and 0.0120 𝑚𝑚−1, 
respectively). (c) The image solution of a given noise realization reconstructed 

by filtered back-projection algorithm.  
 

 

TABLE I. THE QUANTITATIVE PERFORMANCE OF THE STUDIED ALGORITHMS. 

Algorithm  𝛽 Five-trial average  Single-trial 

 
  RMSE (%)  RMSE (%)  Iterations 

SPS-OS 

 20 13.43  13.68  77 

 25 13.23  13.54  75 

 30 13.25  13.52  75 

 45 13.75  13.94  78 
 

       

PPG-OS-P1 

 0.150 12.51  12.92  45 

 0.020 12.45  12.79  44 

 0.025 12.72  13.04  41 

 0.030 13.09  13.37  40 
 

       

PPG-OS-P2 

 0.150 12.96  12.88  50 

 0.020 12.53  13.29  47 

 0.025 13.49  13.76  45 

 0.030 14.06  14.28  43 
 

       

PPG-OS-P3 

 0.150 13.48  13.95  49 

 0.020 13.25  13.62  44 

 0.025 13.43  13.74  41 

 0.030 13.77  14.08  38 

 

All reconstructions were initialized with a zero initial image. 

Since the PWLS cost function with the non-smooth TV 

regularizer is not amenable to optimization using the SPS-OS 

algorithm, the Huber regularizer with 𝛿 = 0.02 was 

considered instead in our comparative evaluations. The 

proximal mapping of the regularizer (step 7 in the Algorithm 

1) was stopped after 𝑇 = 5 iterations, which was found to be 

enough to perform the regularization step. As presented in 

Algorithm 1, a global convergence was declared when the 

relative change between two successive iterates fell below a 

tolerance of 𝜂 = 5 × 10−4. Generally, the performance of the 

image reconstruction algorithms incorporating a regularizer 

(penalty function) strongly depends on the form of the penalty 

and regularization parameter, which controls the impact of 

regularizer on the solution. To access the performance of the 

algorithms, we heuristically chose four regularization 

parameters that result in the lowest root mean squared error 

(RMSE) between the true image, 𝑥∗, and the reconstructed 

image 𝑥  after convergence. The RMSE is defined by: 

RMSE =  
 (𝑥 𝑖−𝑥𝑖

∗)2𝑁
𝑖=1

𝑁
                           (26) 

Table 1 summarizes the average RMSE performance of the 

studied algorithms for the five noise realizations (five-trial 

average) and their performance for a single noise realization 

(single-trial).  

As presented, the algorithms depicts nearly the same 

average RMSE performance for the chosen regularization 

parameters, however, PPG-OS-P1 algorithm has given rise to 

the lowest RMSE compared to other algorithms. The single 

trial results, on the other hand, show that the proposed PPG-

OS algorithm achieves its RMSE performance in a 

considerably fewer iterations than the SPS-OS algorithm. The 

same results were found for the other noise realizations.  

Fig 2 compares the single-trial RMSE performance of the 

algorithms as a function of the number of iterations. In this 

figure, the results of the PPG-OS and SPS-OS algorithms are 

respectively shown for 𝛽 = 0.02 and 𝛽 = 30, where the 

algorithms achieves the lowest RMSE. As seen, the proposed  

a b c 
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Fig. 2 The root mean squared error (RMSE) of the studeid algorithms as a 

function of iteration. Note the the vertical axis is in logarithmic scale. 

 
Fig. 3 The convergance of the studeid algorithms as a function of iteration. 

Note the the vertical axis is in logarithmic scale. 

 

algorithm reduces RMSE (shown in logarithmic scale) much 

faster than the SPS-OS algorithm, particularly in early 

iterations. Fig. 3 keeps track of the convergence rate of the 

algorithms by the log of the error 𝜉 =  𝑥𝑘+1 − 𝑥𝑘 / 𝑥𝑘 , 

which was used as a stopping criterion for the algorithms 

meeting the tolerance of 5×10
–4

 (see Algorithm 1). Similar to 

Fig. 2, the results are shown for 𝛽 = 0.02 for PPG-OS 

algorithms and 𝛽 = 30 for SPS-OS algorithm. The results 

demonstrate the considerably improved convergence rate of 

the proposed algorithm over the SPS-OS. 

As seen, the proposed algorithm with the preconditioner P1 

depicts overall the fastest convergence. The PPG-OS-P1 and 

PPG-OS-P2 algorithms have nearly similar convergence rates, 

while PPG-OS-P3 lags behind them at early iterations and 

approaches them at last iterations. The same trend was almost 

observed for the other noise realizations and regularization 

parameters. It should be emphasized that the convergence 

behavior of PPG-OS with the preconditioner P3 depends on 

the parameter ϵ, used to ensure its positivity. In this study, we 

set ϵ = 0.01. Larger values of ϵ improve the initial 

convergence of the resulting algorithm, however, they cannot 

ensure a conversance rate as fast as smaller values.  

 

Fig. 4 The progression of the image estimated by the studied algorithms 

with k th iteration. 

 

Fig. 4 shows the progression of the image solution with 

iteration toward the final solution. In consistent with Fig. 3, 

the results show the improved convergence rate of the 

proposed algorithm, particularly with the preconditioners P1 

and P2, over the SPS-OS algorithm. It is noticeable that after 2 

iterations the PPG-OS-P1 and PPG-OS-P2 algorithms have 

almost estimated the low frequency details. The quantitative 

performance of image reconstruction algorithms are often 

evaluated in terms of the mean and variance of the average 

intensity within a region of interest (ROI) over several noise 

realizations of projection data. 

To assess the bias-vs.-variance performance of the proposed 

algorithm with the studied preconditioners, we followed a 

ROI-based quantitative approach to obtain the normalized 

mean squared error (NMSE), as a measure of bias, and the 

normalized standard deviation (NSD), as a measure of 

variance (noise). Generally, Two ROIs were chosen such that 

ROI 1 covered a hot spot and ROI 2 covered a background 

spot on soft tissue (see Fig. 5). The NMSE for each ROI was 

obtained by: 

   NMSE =
1

𝑚
  

𝑥 (𝑗)−𝑥 ∗

𝑥 ∗
 

2
𝑚
𝑗=1                         (27) 

where 𝑥 (𝑗 ) =  𝑥𝑖
(𝑗 )𝑛

𝑖 , 𝑥 ∗ =  𝑥𝑖
∗𝑛

𝑖 , 𝑚 is the number of noise 

realizations and 𝑛 is the number of voxels in the under-study 

ROI, 𝑥 
(𝑗 ) is the image reconstructed from jth noise realization 

and 𝑥∗ is the true object distribution. The NSD was also 

obtained by: 

NSD =
1

𝑛
 

 
1

𝑚−1
 𝑥

𝑖
(𝑗)
−𝑥 𝑖

𝑚
𝑗=1

𝑥 𝑖

𝑛
𝑖=1                         (28) 

where 𝑥 𝑖 =
1

𝑚
 𝑥𝑖

(𝑗 )𝑚
𝑗=1  which represents the ensemble mean 

value of voxel i. For each ROI, the NMSE values were plotted 

against NSD values as a function of iteration number. This 

approach in fact indicates the bias-variance trade off as an 

overall image quality index. 

Figs. 5(a)–5(a) show the bias-variance performance of the 

proposed algorithm (𝛽 = 0.02) for ROI 1 and ROI 2, 

respectively. Each curve in the plots presents the NSD versus 

NMSE variation with the increased iteration number. In ROI 

1, the PPG-OS-P1 algorithm shows lower bias and higher  
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Fig. 5 The NSD versus NMSE for (a) ROI 1 and (b) ROI 2 as a function of 

iteration number. 

 

variance, while the PPG-OS-P2 algorithm has a reciprocal 

behavior and shows lower variance and higher bias. In ROI 2, 

the PPG-OS-P2 outperforms the PPG-OS-P1 algorithm and 

show respectively the best and the worst bias-variance trade 

off. In both ROIs, the PPG-OS-P3 depicts the worst 

performance. Generally, the same behavior was observed for 

other regularization parameters. Note that due to its different 

convergence rate, the bias-variance performance of SPS-OS 

algorithm was found very different from the PPG-OS 

algorithm. In both ROIs, this algorithm showed lower variance 

and considerably higher bias for 𝛽 = 30. The same 

performance was observed with other regularization 

parameters. 

For the image reconstruction of clinical data, presented in 

the next section, we utilized the PPG-OS-P2, because i) 

according to simulation results, it showed a comparable 

convergence rate to the PPG-OS-P1 algorithms and it 

outperformed the PPG-OS-P1 in terms of bias-variance trade 

off, ii) the preconditioner P1 needs direct access to the Hessian 

matrix, which in turn necessitates the pre-computation of 

system matrix. However, for clinical datasets, system matrix is 

a very large-sized matrix that raises memory shortage issues. 

Contrary to P1, the preconditioner P2 does not need system 

matrix pre-computation and can be pre-computed using on-

the-fly forward and back-projections. 

  

 
Fig. 6 The convergance rate of the PPG-OS-P1 algorithm for optimal and 

fixed step lenghts as a function of iteration number. 

 

Generally, the computation of an optimal step length (Eq. 

17) for large-sized clinical data remarkably increases the 

overall reconstruction time of the proposed subset-ized 

algorithm, because of an additional forward projection of each 

descent direction, 𝑃∇𝜙(𝑥𝑘), in each subset. To reduce 

computation time, we set up an experiment to find a fixed, 

near-to-optimal step length for the PPG-OS-P1 algorithm 

according to the condition 0 < 𝜏𝑘 ≤ 2/𝜆max (𝑃𝐻). Using the 

power iteration method, it was found that the largest 

eigenvalue of the 𝑃2𝐻 matrix is near to unity for all noise 

realizations and for a strip- or line-integral geometry, i.e. 

𝜆max  𝑃2𝐻 ≅ 1. As a result, one can declare 0 < 𝜏 ≤ 2. Fig. 6 

compares the convergence rate of the PPG-OS-P2 algorithms 

for optimal and fixed step lengths. The results show that as the 

step length increases up to 2, the convergence rate of the 

resulting algorithm approaches to the one with optimal step 

length. Therefore, using 𝜏 = 2, one can considerably save 

computation time, yet exploit a favorable convergence rate. 

B. Experimental PET data 

To qualitatively evaluate the proposed PPG-OS-P1 algorithm, 

the NEMA IEC image quality phantom was scanned and 

reconstructed as defined in the NU 2-2001 PET performance 

measurements [29]. The background in the phantom and the 

six spheres (10, 13, 17, 22, 28 and 37 mm in diameter) were 

filled with 50 MBq of [
18

F] with a 4:1 sphere-to-background 

activity concentration, and data were acquired on a Biograph 6 

Barrel-HiRez PET/CT scanner (Siemens Molecular Imaging 

Inc., TN, USA) for 60 minutes (~350 million prompts). The 

B-HiRez scanner acquires the emission data in 32-bit list-

mode and operates in 3D mode, resulting in sinograms of size 

336×336×313 within 5 segments. Data were histogrammed 

into a static sinogram using an in-house MATLAB-based list-

mode histogrammer, thereby the prompts, randoms and net-

true sinograms were generated. Standard corrections were 

applied on the net-true sinograms (attenuation, normalization 

and scatter), whereby the fully corrected sinogram 𝑦  was 

obtained. To realize the impact of regularization on noise 

reduction, the data were reconstructed in 2D mode (i.e. from 

81 direct and cross planes within segment 0). The Siddon’s 

a) 

b) 
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algorithm [30] was used to drive a line-integral based 

geometric system matrix for the B-HiRez scanner. To have a 

fast and memory efficient image reconstruction, a hybrid of 

system matrix pre-computation and in-plane and axial 

symmetry translations was utilized. At the end, the 

preconditioner P2 was pre-computed and an image volume of 

the size of 336×336×81 was reconstructed by the proposed 

algorithm using 4 iterations and 8 subsets. 

Fig. 7(a)–7(c) compares a representative slice of the 

reconstructed image without regularization (𝛽 = 0), with 

those reconstructed with 3D Huber regularization (𝛿 = 0.02) 

using the parameters 𝛽 = 0.005 and 𝛽 = 0.01, respectively. 

As seen, the regularized reconstructions have noticeably 

reduced noise and have successfully located the 10 and 13 mm 

hot spots, which are of importance in the diagnosis of small 

tumors. In Fig. 7(d), the quantitatively performance of the 

resulting algorithms has been compared using an intensity 

profile along the line shown in Fig. 7(c). The profiles show 

that regularizations have effectively reduced background 

noise, however, with a compromise on the estimated activity 

of the 22 mm hot spot. In general, the results showed that 3D 

regularization can effectively improve the diagnostic quality 

of the reconstructed images. The future work would be a more 

complete qualitative evaluation of the proposed algorithm in 

clinical datasets terms of bias-variance and contrast recovery. 

 

 

 
Fig. 7 The images reconstructed by the PPG-OS-P1 algorithm with the 

regularization parameters of (a) 𝛽 = 0, (no regularization), (b) 𝛽 = 0.005 

and (c) 𝛽 = 0.01. (d) The intensity profiles of the images in (a)–(c) along 
the line shown in (c). The display window is the same in all images. 

 

 

 

V. CONCLUSION 

We proposed a splitting-based preconditioned conjugate 

gradient algorithm, accelerated with ordered-subsets, for TV 

and Huber regularization in PWLS image reconstruction of 

PET data. The splitting allowed for decoupling of the 

regularizer from the PWLS cost function, thereby improving 

the ill-conditioning of its Hessian and thus convergence rate. 

In conclusion, the proposed algorithm proved efficient in 

image quality and algorithmic complexity and outperformed 

the SPS-OS algorithm. 
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