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Multimodality image registration plays a crucial role in various clinical and research 
applications. The aim of this study is to present an optimized MR to CT whole-body 
deformable image registration algorithm and its validation using clinical studies. 
A 3D intermodality registration technique based on B-spline transformation was 
performed using optimized parameters of the elastix package based on the Insight 
Toolkit (ITK) framework. Twenty-eight (17 male and 11 female) clinical studies 
were used in this work. The registration was evaluated using anatomical landmarks 
and segmented organs. In addition to 16 anatomical landmarks, three key organs 
(brain, lungs, and kidneys) and the entire body volume were segmented for evalu-
ation. Several parameters — such as the Euclidean distance between anatomical 
landmarks, target overlap, Dice and Jaccard coefficients, false positives and false 
negatives, volume similarity, distance error, and Hausdorff distance — were calcu-
lated to quantify the quality of the registration algorithm. Dice coefficients for the 
majority of patients (> 75%) were in the 0.8–1 range for the whole body, brain, and 
lungs, which satisfies the criteria to achieve excellent alignment. On the other hand, 
for kidneys, Dice coefficients for volumes of 25% of the patients meet excellent 
volume agreement requirement, while the majority of patients satisfy good agree-
ment criteria (> 0.6). For all patients, the distance error was in 0–10 mm range for 
all segmented organs. In summary, we optimized and evaluated the accuracy of an 
MR to CT deformable registration algorithm. The registered images constitute a 
useful 3D whole-body MR-CT atlas suitable for the development and evaluation of 
novel MR-guided attenuation correction procedures on hybrid PET-MR systems.
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I. InTRoduCTIon

Since the infancy of digital image processing techniques, image registration has widely been used 
in medical applications. The quest for automatic or even semiautomatic alignment of various 
medical images containing identical or different information spurred the development of robust 
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multimodality image registration algorithms. The manifold applications of image registration 
is beyond the scope of present study; however, pointing to a number of noticeable applications 
in medicine is helpful. Image registration plays an undeniable role in image comparison pro-
cedures such as treatment verification carried out by comparison of pre- and postintervention 
images,(1,2) subtraction of ictal and inter-ictal SPECT images,(3,4) bone growth monitoring on 
X-ray or ultrasound time series,(5) tumor growth monitoring on series of MR scans,(6) monitoring 
response to treatment in PET,(7) and temporal differencing for motion detection.(8) Other wide 
scopes for image registration are statistical atlas generation(9) and atlas-based segmentation,(10) 
and attenuation correction on hybrid PET/MR systems.(11) This later reference reports on an 
MR-guided attenuation correction method relying on an atlas consisting of registered MR and 
CT images of several subjects.

In clinical oncology, the need for integration of anatomical and functional information for 
diagnosis, staging, and therapy planning has pushed medical imaging technology into the 
area of multimodality and multiparametric imaging.(12-14) Multimodality imaging systems 
combine the advantages of both anatomical imaging modalities (e.g., CT, MRI, ultrasound, 
portal imaging) and functional imaging modalities (e.g., SPECT, PET, fMRI, MRS). With the 
advent of multimodality imaging, image registration became an essential component of both 
clinical and research applications and is increasingly attracting the interest of the medical  
imaging community.(15)

Recently developed hybrid PET/MRI systems provide the combination of anatomical– 
functional and even functional–functional information.(13,16-18) Although hybrid PET/MRI 
provides highly accurate hardware based coregistered images, the lack of suitable and efficient 
motion correction techniques and the need for MR-guided attenuation correction make software-
based image registration an essential component of this technology.

The procedure used for atlas generation consists of two major parts: image registration and 
conversion. A large number of image registration algorithms were proposed varying in dimen-
sionality, nature of transform, modalities involved, and optimization procedure. Owing to the 
various features associated with the procedure, different classifications were presented.(19)  
Regardless of the type of registration, the evaluation and validation of image registration algo-
rithms play a pivotal role in the whole process. Image registration depends on the geometry of 
both the target image (the fixed image on which the second image is registered) and the source 
image (the moving image that is registered on the target image). Therefore, introducing a thor-
ough concept that guarantees the accuracy of the registration process in whole-body imaging 
proved to be a difficult task. However, some general guidelines were proposed for validation of 
image registration, particularly for the thoracic imaging.(20,21) Validation of image registration 
algorithms usually follows a sequence of measurements using computer-generated anatomical 
models,(22) physical phantoms(23,24) or images of patients or volunteers.(24,25) Although validation 
based on phantom studies holds a high precision owing to the accurately known transforma-
tion parameters of warped phantoms as well as the inverse transform which is used as ground 
truth for evaluation, it is not inclusive since realistic patient geometry is hardly considered. 
The issue becomes more complex in the case of intermodality registration. On the other hand, 
validation based on clinical images is prohibitive in terms of time and availability of expert 
evaluators. In other words, either for localization of anatomic landmarks or segmentation of 
organs, expert knowledge (as reference) is necessary, which deters investigators from follow-
ing this approach.

In this study, we describe a deformable intermodality (MR to CT) image registration approach 
with the aim to exploit it for atlas generation in the context of MR-guided attenuation cor-
rection. The atlas is made up of aligned whole-body CT and MR images of 28 patients. The 
performance of the 3D intermodality registration technique is evaluated using clinical images 
through manually defined anatomical landmarks and segmented organs.
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II. MATERIALS And METHodS

A. Image registration
Image registration is the process of finding a spatial transformation from one image or domain 
to another according to a given set of constraints. This constraint could be a special kind of 
similarity measure. Consequently, the task is to optimize the transformation parameters based 
on the candidate similarity measure. Our registration process includes two main steps. The first 
step allows the achievement of preliminary alignment through a rigid transform to roughly align 
the target and source images. The rigid transform with six parameters consists of a sequence of 
translation and rotation transforms. The second step consists of a nonrigid registration procedure 
by means of the B-spline deformable transform. This registration strategy is based on methods 
described by Rueckert et al.(26) The B-spline transformation is a free-form deformation described 
by a cubic B-spline function defined on a uniformly spaced control point grid (independent of 
the image data) covering the image being registered. B-spline registration requires initial control 
points which were selected uniformly to produce a 3D grid. During the registration process, 
transform parameters are calculated for this grid; then the whole 3D image is transformed in 
each loop. As such, the registration process is fully automated and was carried out without user 
intervention for all studies.

The registration of whole body images was carried out using elastix,(27) a command line 
driven program based on the Insight Toolkit (ITK) registration framework (open source; National 
Library of Medicine).(28) The registration parameters were selected based on our own assessment 
of the various possible options and recommendations provided by the developers of elastix 
based on their experience and feedback from a large community of users. We used parameters 
corresponding to lung registration study, since the lungs were the most problematic regions.(29) 
The first tests demonstrated that this is a good candidate for our task, but some changes were 
needed to achieve optimal performance following in-depth evaluation of the impact of the vari-
ous parameters involved. The three most important steps of the registration procedure: 

1. The rigid registration was performed using a multiresolution registration approach at five 
different levels, from a level 16 times lower in resolution to full original resolution.

2. The elastic registration was carried out using three resolutions, from eight times lower to 
twice the original resolution.

3. The total number of iterations for each of the two registrations was about 8000.

We set higher pyramid levels for rigid registration since large and rough transform steps are 
required. Besides, when we increase pyramid levels and/or iterations in the B-spline registration, 
the resulting image tends to deviate from the target owing to the fact that higher pyramid levels 
and/or number of iterations lead to overdeformation of the resulting image. The normalized 
mutual information (NMI) metric was considered as similarity measure, but other measures 
available in elastix could have been used. However, better performance was reported when 
using the normalized correlation coefficient (NCC) for intramodality registration and the NMI 
for intermodality registration metrics. In agreement with observations made by other users, a 
slightly better performance was achieved using the NMI for intermodality registration because 
this metric is able to manage contrast scale differences introduced by different modalities. 
We therefore used NMI metric with 32 bins, 4096 samples for elastic, and 5000 samples for 
rigid registration.

A steepest descent optimizer was chosen to optimize the similarity measure. This optimizer 
uses the gradient vector to move through the cost function until an optimum is found. To deter-
mine the best step size and learning rate which is not trapped inside local minima, the whole 
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process was repeated several times. For each resolution, a specific step size was assigned to 
the optimizer. For the gradient descent, the step is given by:

  (1)
 
Step

a
(A    k    1)

where k is the iteration number. The parameters a, A, k, and α are summarized in Table 1. 
This formula was used by Klein et al.(30) and was judged to be appropriate for our registration 
procedure. For obvious reasons the step size is large in the beginning and gradually becomes 
smaller at higher iterations. The image transformation consists of two steps: (i) transforma-
tion in physical space, and (ii) resampling (from physical space to voxel space). The B-spline 
transform is equivalent to the generation of deformation fields where a deformation vector is 
assigned to every point in physical space. The deformation vectors are computed using 3rd 
order B-spline interpolation from the deformation values of points located on a uniform grid. 
The uniform grid spacing was eight voxels which accounts for around 30,000 control points. 
It has been shown that a smaller number of randomly selected control points speeds up the 
process without affecting negatively the optimization process.(30) Therefore, 5,000 points were 
randomly selected in each iteration. Conversely, the resampling step requires interpolation to 
calculate the intensity values of the transformed image. In order to speed up the resampling 
process, for each iteration, a 1st order B-spline method was used to interpolate the moving 
image, whereas a 3rd order B-spline method was used for the final iteration.

The registration process was fully automatic, taking less than 30 min on Intel Core 2 Quad 
processors (Intel Corporation, Santa Clara, CA). Once the process is finished, the software 
writes an ASCII file containing the optimized parameters for each transformation, namely six 
parameters for the rigid registration and tens of thousands (variable depending on the dataset) 
for the elastic registration. This ASCII file is used by other utilities (Transformix) to deform 
the source image to produce the final registered image.

B. data acquisition
Whole body X-ray CT and MR images were acquired for 28 (17 male and 11 female) patients. 
The patients were randomly selected from the clinical database (age between 18 and 81 years). 
The weight and height ranges differ between male (height: 164 to 179 cm; weight: 59–95 kg) 
and female (height: 148 to 168 cm; weight: 38–88 kg) patients. It should be emphasized that 
in most of the cases, patients’ disease state did not affect the registration process, except a 
few cases which were excluded when the presence of large metallic implants deteriorated the 
overall image quality.

CT images were acquired for attenuation correction of PET/CT studies on the Biograph HireZ 
scanner (Siemens Healthcare, Erlangen, Germany). CT scanning was performed using 120 kVp 
tube voltage and CARE Dose (Siemens) tube current modulation which sets the tube current 

Table 1. Summary of the parameters required to determine the step size for the optimizer.

 Type Rigid Elastic

 Resolution
 (in number 16 8 4 2 1 8 4 4 2 2
 of pixels) 
 No of iterations 4096 2048 1024 512 256 4096 2048 1024 512 256
 Gradient a 4000 2000 7000 20000 20000 30000
 descent A 50   50
 parameters α	 0.6   0.602
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depending on body thickness. Each image volume contains between 300 and 400 transaxial 
slices with a resolution of 512 × 512 pixels. The voxel dimensions are 1.367 × 1.367 × 2.5 mm3. 
Three-dimensional MR image volumes were acquired using the Achieva 3T X-series (Philips 
Healthcare, Andover, MA) MRI subsystem of the hybrid PET/MRI system installed at Geneva 
University Hospital.(31) MRI image volumes contain approximately 180–200 axial slices (320 × 
320 pixels). The voxel dimensions are 1.875 × 1.875 × 6 mm3. A 3D T1-weighted spin echo 
pulse MR sequence was acquired with 200 frequency encoding steps, as well as phase encoding 
steps at 4.7 ms intervals (TR: 4.07 ms; TE: 2.3 ms; flip angle: 10°). The time interval between 
MR and CT data acquisition varied between approximately from 30 to 90 minutes. 

Higher resolution with finer sampling would have been desirable for optimal image registra-
tion but, since this study was conducted retrospectively, we had only access to low resolution 
whole-body MR images (with rough voxel resolution to increase SNR) used for attenuation 
correction and anatomical localization. Smaller voxel sizes will provide noisier images of even 
poorer quality, which might worsen the registration process.

C. Evaluation
The most relevant issue in correlative imaging is the ability to locate the same anatomical 
features in coregistered images. In other words, a perfect registration algorithm completely 
aligns all corresponding points and objects of the source and target images (in our case organs 
or landmarks of human anatomy). Hence, the validation step requires accurate segmentation of 
specific organs, as well as localization of anatomic landmarks. One of the prevalent reference 
or ground truth for segmentation of organs and localization of landmarks is expert knowledge. 
Despite its inherent limitations and reproducibility, expert knowledge is the still the most widely 
used reference for evaluation of image registration techniques. Consequently, we can measure 
three different kinds of metrics for registration evaluation: point, surface, and volume. For each 
patient, 16 anatomical landmark spatial coordinates were defined on both CT and MR images 
by a radiologist (Table 2).(32,33) The Euclidean distance between these points in the two datasets 
was calculated as the registration error.  In order to evaluate volume and surface discrepancies, 
the whole-body, along with three key organs (brain, lungs, and kidneys) was segmented. The 
segmentation algorithm consists of a combination of manual and active contour models(34) 
(snakes) using an interactive program which facilitates the task of manual segmentation and 
initial contour definition. The active contour model is used to accelerate the segmentation pro-
cess but is prone to leak in some regions, wherein manual intervention is required. In addition, 

Table 2. Statistical characteristics of registration errors (in mm) corresponding to predefined anatomical landmarks for 
grouped analysis of 28 clinical studies presented in Fig. 2. Δ is calculated by a statistical test on groups which shows 
confidence interval for 95% degree of significance. Its range is shown by notches in the plots.

 Minimum 1st Quartile Median ± Δ 3rd Quartile Maximum

Apex of right lung 0.33 3.87 7.74±2.63 12.58 20.51
Apex of left lung 0.95 5.29 7.46±1.75 11.07 17.61
Liver dome 0.00 8.14 14.01±4.32 22.45 28.92
Anterior right liver border 0.84 9.14 14.61±3.29 20.04 32.40
Anterior left liver border 3.78 7.31 11.52±3.20 17.91 33.32
Lateral liver border 2.39 8.26 11.98±3.03 18.29 25.97
Posterior liver border 0.00 5.32 9.51±2.58 13.85 18.78
Inferior liver border 0.00 5.29 7.61±2.37 13.15 22.07
Right adrenal 0.00 5.46 8.43±3.68 17.63 33.30
Celiac trunk 0.00 4.88 6.32±3.77 17.37 30.47
Upper tip of right kidney 0.00 4.85 6.87±1.77 10.70 18.73
Upper tip of left kidney 2.28 4.71 8.19±1.78 10.59 17.91
Lower tip of right kidney 0.74 3.89 7.24±2.17 11.09 18.76
Lower tip of left kidney 0.00 5.56 10.21±3.43 16.89 27.11
T10 vertebra 0.00 3.54 9.25±3.66 15.64 24.49
L5 vertebra 4.55 8.48 13.01±3.48 19.99 34.11
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kidneys were not easily distinguished on the low-resolution MRI and in some cases on CT 
where manual segmentation was carried out. However in three cases, the kidneys were left out, 
since they were not distinguishable on MRI, even by experienced radiologists.

Various strategies were proposed to measure the discrepancy between volumes and surfaces 
of corresponding segmented volumes of source and target images. These strategies can be clas-
sified into three different categories as discussed by Klein et al.:(25) volume overlap, volume 
overlay errors, and surface distance measures.

C.1 Volume overlap
These are the most often used methods to evaluate image registration techniques. Basically 
these methods are based on measurements of union, intersection, and subtraction of segmented 
volumes. They roughly quantify the fraction of source (S) and target (T) volume labels that agree 
or disagree. A good description of these methods, including multiple labels, fractional labels, 
and weighted labels, is given in Crum et al.(35) The more accurate the registration, the closer 
these quantities approach the unity. For this reason, these methods belong to the same group.

Target overlap can be calculated over a set of r regions (regions that were labeled through 
segmentation):

  (2)
 

Mean overlap (Dice coefficient) is a figure of merit that quantifies the intersection between 
source and target labels divided by the mean volume of the two regions:

  (3)
 

The Dice coefficient(36) is a special case of Kappa statistical coefficient.(37) A possible inter-
pretation of the results of this quantification is given below:(38)

•  Poor agreement → less than 0.2
•  Fair agreement → 0.2 to 0.4
•  Moderate agreement → 0.4 to 0.6
•  Good agreement → 0.6 to 0.8
•  Excellent agreement → 0.8 to 1.0

Union overlap (Jaccard coefficient - Tannimoto coefficient) is a figure of merit that quantifies 
the intersection between source and target labels divided by the union of both regions:

  (4)
 

The Jaccard coefficient(39) (also known as Tannimoto coefficient(40)) is treated separately 
from the Dice coefficient; however, one should note that both are related by the following 
formula:

  (5)
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C.2 Volume overlay error
Following the previously described volume overlay methods that quantify the agreement between 
source and target regions, we can also compute the disagreement by making the hypothesis that 
the target volume is the truth we must achieve and the source volume is a tentative to achieve 
this truth. The false-negative (FN) value can then be defined as the proportion of target volume 
that is incorrectly not covered by the source volume:

  (6)
 

Inversely, the false-positive (FP) error can be defined as the proportion of source volume 
incorrectly not covering the target volume: 

  (7)
 

Volume similarity is a figure of merit that measures the similarity between target and source 
volumes regardless of the fact that the volumes are superimposed. Therefore, it is not techni-
cally a quantification of registration accuracy. However, it provides information about which 
registration method gives a closest source volume to the target volume.

  (8)
 

C.3 Surface distance measures
The above-mentioned figures of merit do not explicitly assess boundary discrepancies between 
source and target regions. The distance error (DE) is a well-defined quantity to measure the 
boundary mismatch between the source and the target.(25) This distance is equal to the minimum 
distance from each boundary point of the source region (SBp) to the entire set of points of the 
target region (TB), averaged across the N boundary points:

  (9)
 

The most frequently used discrepancy measure is the Hausdorff distance (HD), which 
measures the maximum distance one would need to move the boundaries of the source region 
to completely cover the target region.(35) Formally, HDS→T from the source region (S) to the 
target region (T) is a maximum function defined as:

  (10)
 

C.4 Implementation
A set of classes were written in C++ object-oriented language to implement the above-described 
image registration validation metrics, taking advantage of ITK classes for image I/O operations 
and well-defined image data structure. Figures of merit for volume discrepancy measurement 
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were calculated by counting the voxels of union, intersection, and subtraction of each region. The 
calculation of surface distance required a faster algorithm owing to the high complexity of find-
ing the minimum Euclidian distance of adjacent voxels for all points on the surface. As a result, 
the distance map for each region was generated and used to find the surface discrepancies.

 
III. RESuLTS 

Figure 1 shows two representative clinical studies before and after registration. The misalign-
ment between MRI and CT images at the level of the arms and head is commonplace in whole 
body imaging. It is visually obvious that the images were matched satisfactorily after registra-
tion. The results of evaluations for the considered patient population in terms of point-to-point 
evaluation of the deformable registration procedure are shown in Fig. 2 using box and whisker 
plot. The box shows the median (red horizontal line) and the lower (Q1) and upper (Q3) quartiles 
(defined as the 25th and 75th percentiles). The red plus sign in the plots indicates the outliers. 
Outliers in our plot include dubious results which are beyond 1.5 times the interquartile range 

Fig. 1. Representative clinical studies of two patients showing 3D fused MRI and CT images before and after image 
registration: (a) and (d) coronal, (b) and (e) sagittal, and (c) and (f) transaxial views. For each image pair, left and right 
panels represent the same image before and after registration, respectively.
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(Q3-Q1). A possible origin of dubious results is the failure of the image registration process 
in cases of poor MR image quality so that the organs are not distinguishable enough. In these 
cases, the cost function fails to correctly guide the optimizer. The whiskers show the maximum 
and minimum of population after elimination of outliers. The box and whisker plots not only 
indicate the quantitative characteristics of the samples under study, but also hold useful features 
for comparison of different groups of samples. The notches in each box depict the confidence 
interval for the median at 95% of confidence degree. Two analogous medians with confidence 
intervals that overlap are not significantly different. It can be seen that for the majority of 
data points (above 75%), the error is under 20 mm. The detailed statistical analysis results are 
reported in Table 3.

Figure 3 shows box and whisker plot for volume overlap of various organs. As mentioned 
earlier, the comparison was performed for the whole body and for three specific organs (brain, 
lungs, and kidneys). The plot indicates some outliers considered as dubious results. The false 
positive, false negative, and volume similarity plots for the 28 patients show an excellent 
alignment (error under 0.1) for whole body registration (Fig. 4). False negative is the fraction 
of the target image volume that is not intersected by the source image, which is under 0.35 for 
the majority of patients. On the other hand, the false positive is a fraction of source image that 
is not intersected by target image. The majority of patients have false-positive value under 0.3 
for all evaluated organs. 

As mentioned earlier, the Hausdorff distance is the maximum distance one would need to 
move the boundaries of the source region to completely cover the target region which is obtained 
by finding the maximum value of the distance map. Figure 5 shows the box and whisker plot 
of maximum and minimum distances for 28 patients. Detailed statistical parameters for Figs. 5 
to 7 are summarized in Table 3.

For all measured organs, the Hausdorff distance is above 10 mm. In some cases computed 
Hausdorff distance for whole body exceeds 50 mm. This relatively high error originates from 
the interscan movements of patient arms. Due to the higher degree of freedom, arms are 
potential source of mismatch. In addition to arms, slight movements of the head bring about 
misregistration errors, as well. In comparison with arms, head misregistration happens seldom 
in patients. Therefore the computed Hausdorff distance shows smaller misregistration errors 
for the brain than for the whole body. Figure 6 illustrates the arms and head misregistration as 
the worst case.

Fig. 2. Box and whisker plot of registration error for manual evaluation performed by an experienced physician using 
different anatomic landmarks.
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Apart from the local misregistration (in the arms), the distance error, which is the mean 
value of the distance map, indicates a fair agreement (under 10 mm) for the majority of patients 
(Fig. 5). Diaphragmatic function is the principal source of misregistration in the lungs and 
even kidneys. A close look at the 3D distance map of lungs reveals that the lungs’ base and the 
kidneys’ apex are the most susceptible to misregistration error (Fig. 7 (a)-(b).

 

Table 3. Statistical characteristics of results presented in Figs. 5 to 7 for grouped analysis of 28 clinical studies report-
ing volume and surface discrepancies of four anatomical regions. Δ is as defined in Table 2.

    Minimum 1st Quartile Median ± Δ 3rd Quartile Maximum

  Target Overlap 0.876 0.909 0.929±0.01 0.953 0.961
  Mean Overlap (DC) 0.831 0.851 0.884±0.02 0.913 0.935 
  Union Overlap (JC) 0.908 0.919 0.939±0.01 0.954 0.966 
 Whole False Negative 0.013 0.035 0.049±0.01 0.054 0.082 
 body False Positive 0.039 0.047 0.071±0.01 0.091 0.124 
  Volume Similarity Error -0.040 -0.020 -0.012±0.01 -0.002 0.010 
  Hausdorff Distance (mm) 56.7 75.8 106.8±14.5 123.0 153.8
  Distance Error (mm) 3.0 4.6 6.5±1.4 9.2 13.3
  Target Overlap 0.607 0.821 0.906±0.05 0.975 0.996 
  Mean Overlap (DC) 0.402 0.649 0.779±0.06 0.845 0.895 
  Union Overlap (JC) 0.623 0.787 0.876±0.04 0.916 0.945 
 Brain False Negative 0.072 0.111 0.164±0.04 0.234 0.374 
  False Positive 0.004 0.025 0.094±0.05 0.179 0.393
  Volume Similarity Error -0.063 0.008 0.045±0.02 0.063 0.107
  Hausdorff distance (mm) 11.5 15.4 21.6±7.2 38.8 64.3
  Distance Error (mm) 1.4 2.6 3.7±1.3 6.7 8.3
  Target Overlap 0.613 0.800 0.867±0.04 0.926 0.969 
  Mean Overlap (DC) 0.591 0.737 0.787±0.03 0.840 0.928 
  Union Overlap (JC) 0.829 0.849 0.881±0.02 0.913 0.962 
 Lungs False Negative 0.029 0.050 0.107±0.03 0.134 0.213 
  False Positive 0.031 0.074 0.133±0.04 0.200 0.387
  Volume Similarity Error -0.095 -0.054 -0.023±0.02 0.004 0.081
  Hausdorff Distance (mm) 20.9 26.0 36.2±4.3 39.8 53.6
  Distance Error (mm) 1.1 2.3 3.0±0.5 3.8 5.4
  Target Overlap 0.431 0.574 0.715±0.07 0.798 0.916 
  Mean Overlap (DC) 0.396 0.461 0.579±0.07 0.673 0.750 
  Union Overlap (JC) 0.567 0.631 0.733±0.05 0.805 0.857 

 Kidneys False Negative 0.000 0.088 0.196±0.06 0.280 0.446 
  False Positive 0.000 0.157 0.245±0.06 0.336 0.569
  Volume Similarity Error -0.316 -0.108 -0.010±0.04 0.034 0.139
  Hausdorff Distance (mm) 0.0 14.7 17.3±3.5 26.0 32.9
  Distance Error (mm) 0.0 2.5 3.6±0.9 5.6 6.0
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Fig. 3. Box and whisker plot for registration evaluation using volume overlap metric.

Fig. 4. Box and whisker plots for volume overlay errors: (a) false positive, (b) false negative, and (c) volume similarity.

Fig. 5. Box and whisker plots for the surface distance measure for the whole body, brain, lungs, and kidneys: Hausdorff 
distance (a) and distance error (b).
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IV. dISCuSSIon

In this work, we performed and evaluated a 3D whole-body CT to MRI nonrigid image reg-
istration algorithm aiming at elaborating a framework for implementation and validation of 
MRI-guided attenuation correction strategies on hybrid PET/MRI systems. The validation 
part relied on the use of retrospectively acquired clinical data and various metrics including 
qualitative visual assessment performed by an experienced physician and objective computer-
aided measurements. A limited number of studies focused on the use of 3D registration for 
MR-guided attenuation correction.(41-43) These contributions focused mostly on brain imaging 
applications where intramodality registration, even of a patient study to an atlas, is less chal-
lenging because of the rigidity of the head compared to whole-body imaging. In addition, these 
contributions failed to describe in sufficient detail the registration procedures used to enable 
their reproduction and reuse and, more importantly, the registration accuracy was not assessed 

Fig. 6. The misalignment of the arms and head is demonstrated on the overlaid CT and MRI images (a). The same images 
are shown (b) after segmentation and labeling (MR, red; CT, white). 3D view of distance map for whole body for the 
worst case study (c).

Fig. 7. 3D distance map for kidneys (a), lungs (b), and brain (c) for the worst case study.

(a) (c)

(b)
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or quantified. One of these studies used an aligned MR/CT atlas to build a pseudo-CT image 
using MR-to-MR registration (intramodality registration).(41) More recently, the same group 
reported on the comparison of segmentation and atlas registration and pattern recognition-based 
methods using whole-body studies, and concluded that the latter provides better overall PET 
quantification accuracy than the MR image segmentation approach.(11) The focus of this paper 
was on attenuation correction using the same registration approach. The visual assessment of 
registered images (Fig. 1) indicates excellent visual alignment of images after registration in 
most of the cases. 

It is obvious that for the volume overlap metric (Fig. 3), the sensitivity of the measurement 
falls down as the volume increases. In other words, a tiny misalignment in small volumes 
will cause a greater effect on the global results. One can observe that we obtain higher cor-
respondence for the whole body than kidneys. There is one case (patient 08) that falls under 
0.3. This drastic falloff originates from the failure in detecting the kidneys owing to the lower 
image quality. As mentioned before, a DC (mean overlap) higher than 0.8 implies an excellent 
agreement of volumes. Thus, the majority of patients (above 75%) meet the criterion for whole 
body, brain, and lungs. On the other hand, for kidneys, the majority of patients satisfy the good 
agreement of volumes criteria (0.6 ≤ DC < 0.8). The smaller volume of the kidneys and the 
respiratory motion are the main causes of this reduction. Equation (5) explicitly demonstrates 
that the JC (union overlap) depends on the DC value. Therefore the discussion about DC backs 
up the JC, as well.

Comparing the false negative and false positive for the brain (Fig. 4) indicates a slightly 
higher false-positive error. Owing to the fact that the anterior half of the brain is smaller than 
the posterior half, any anterior–posterior shift will bring about different false-negative and 
false-positive error. There is a fair agreement between the manual evaluation based on expert 
knowledge (Fig. 2) and objective evaluation based on computational figures of merit (Fig. 5) 
for lungs and kidneys.

The previously introduced quantities (Eq. (2-10)) are widely used in the evaluation of 
medical image registration and segmentation algorithms. For evaluation of image segmenta-
tion, manually segmented and automatically segmented objects are usually compared on the 
perfectly aligned images.(44-46) Some studies reported Dice coefficients close to 0.7 as excel-
lent results.(46) Likewise, many papers used evaluation metrics to compare different types of 
registration algorithms.(25,47) In our work, we merely validated our intermodality deformable 
registration process to build a whole-body CT-MR atlas and define a framework for validation 
of MR-guided attenuation correction in hybrid PET/MRI using CT-based attenuation correc-
tion as reference. 

We strived to cover the extensive range of quantities available in this study. Nevertheless, 
since the whole registration process is sensitive to geometry and differing from one object to 
the other, proposing a comprehensive approach for evaluation of deformable image registra-
tion is not an easy task, particularly for whole-body imaging. Algorithms developed to address 
the registration problem for a specific body region (e.g., the lungs) and validated using special 
test cases for that region might not perform equally well in other regions of the body or in 
whole-body studies. Therefore, we do not claim that our evaluation is complete and perfect, 
as it includes many limitations. The limited number of anatomic landmarks can be considered 
as the main limitation of our work. We aimed at selecting a largest number of data points per 
site for reliable evaluation. However, using a large number of data points per anatomical site 
is difficult to achieve when a human observer is involved. Another limitation is that our evalu-
ation relied heavily on the segmentation of the whole body and three specific organs. The 
errors and uncertainties associated with segmentation may be considered as prevailing origin 
of the discrepancies. Segmentation errors also need to be estimated using a reproducibility 
experiment involving multiple observers over multiple time points, which was not possible in 
our case owing to the lack of qualified human observers willing to perform this tedious task. 
Nevertheless, it is commonplace to use human expert knowledge as ground truth for evaluation 
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of image segmentation techniques. Indeed, most of the studies cited did not perform multiple 
observer studies owing to the above-mentioned difficulties.

In addition to the above, when probing outliers from box and whisker plots, we encountered 
cases where the organ being considered is indistinguishable, which consequently causes reg-
istration and segmentation errors. The segmentation errors have several origins, including low 
image contrast in low-resolution MR images used in this protocol, metal artifacts in images of 
some patients bearing metallic implants (patient #21), and respiratory motion artifacts.

There are limited data in the literature reporting on performance assessment of whole-body 
multimodality image registration since most of the studies focused on specific regions of the 
body, mainly the brain where registration with high accuracy could be achieved. Our experi-
ence in cardiac perfusion PET/CT studies led to the conclusion that deformable registration 
outperforms both manual and rigid-body registration.(48) Klein et al.(27) reported a mean distance 
between corresponding points of 1 mm for brain imaging using elastix. Our experience with 
elastix for deformable atlas registration in small animal PET/CT imaging revealed a mean 
registration mismatch distance of about 6 mm with good quantification accuracy in most of the 
regions, especially the brain, but not in the bladder.(49) In this work, a median distance error of 
3.7 mm was obtained for brain segmentation (Table 3), which is reasonable for a whole-body 
registration. The median of our registration errors for anatomic landmarks varies between 7 mm 
and 14 mm; however, the misregistrations were local. A lower overall error can be expected in 
our case. It should be noted that because of the retrospective nature of the study, physical spac-
ing along Z direction for the datasets used in this work is much larger than that of axial (instead 
of equal physical spacing), which might affect the registration accuracy. Uniform sampling in 
physical space is more effective than uniform sampling in voxel space (in case voxels are not 
isomeric). However, even in this case we did not consider all control points. Eight-voxel spacing 
will result in over 30,000 control points, which will considerably slow down the whole process. 
Our registration procedure randomly selects 6,000 control points for each iteration.

Segmentation of all organs in both CT and MR images is tricky, and on that account we 
considered only three organs located in different regions of the body to obtain a global estima-
tion of the performance of the image registration algorithm. Various patient motions, such as 
physiological respiratory motion and arms motion, are other sources of error that can compro-
mise the registration process.

The registered image pairs constitute a useful 3D whole-body MR-CT atlas, suitable for the 
development and evaluation of novel MR-guided attenuation correction procedures for hybrid 
PET/MRI systems. Our aim is to assess the potential of various knowledge base learning 
strategies to convert MR to pseudo-CT images, enabling the generation of attenuation maps 
with continuous variation in attenuation correction factors through classification of bone and 
consideration of lung inhomogeneities. This work is under progress and will be reported in 
future publications.

 
V. ConCLuSIonS

We have developed and evaluated an MR to CT deformable registration algorithm using 28 
clinical whole-body scans. The registration could be performed from CT to MR space either 
by applying inverse transform parameters or performing another registration. Our intention in 
this work was to assess the performance of the registration algorithm while keeping original 
CT with defined landmarks as reference. The registration of large volumes requires more efforts 
in terms of computing time and computational complexity. Although some of the considered 
evaluation metrics (DC and JC) were not independent, we deliberately included all potential 
metrics for evaluation. Our 3D registration process suffers from mismatch in the arms in some 
cases. However, the applied method is able to accurately register the arms and other parts of 
the body in most of the cases at the expense of computation time. Besides, for the targeted 
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objective (evaluation and atlas generation for MR-guided attenuation correction), the lack of 
correspondence at the level of the arms will not be a major obstacle.
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