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Abstract
Purpose: The aim of this study is to generate a four-class magnetic resonance imaging (MRI)-based
attenuationmap (μ-map) for attenuation correction of positronemission tomography (PET) data of thehead
area using a novel combination of short echo time (STE)/Dixon-MRI and a dedicated image segmentation
method.
Procedures: MR images of the head area were acquired using STE and two-point Dixon
sequences. μ-maps were derived from MRI images based on a fuzzy C-means (FCM) clustering
method along with morphologic operations. Quantitative assessment was performed to evaluate
generated MRI-based μ-maps compared to X-ray computed tomography (CT)-based μ-maps.
Results: The voxel-by-voxel comparison of MR-based and CT-based segmentation results yielded
an average of more than 95 % for accuracy and specificity in the cortical bone, soft tissue, and air
region. MRI-based μ-maps show a high correlation with those derived from CT scans (R290.95).
Conclusions: Results indicate that STE/Dixon-MRI data in combination with FCM-based segmenta-
tion yields precise MR-based μ-maps for PET attenuation correction in hybrid PET/MRI systems.

Key words: PET/MRI, Attenuation correction, Attenuation map, STE pulse sequence, FCM
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Introduction

C ombination of positron emission tomography (PET)

with magnetic resonance imaging has recently drawn

the attention of many researchers to take advantage of highly
sensitive PET data as well as the ability of MRI to yield a
wide variety of anatomical and functional information [1–3].
Despite remarkable advances in PET imaging, the effect of
photon attenuation still remains unsolved. Although it has
been investigated that both attenuation-corrected andCorrespondence to: Mohammad Ay; e-mail: mohammadreza_ay@tums.ac.ir



uncorrected PET data may predict the same results for
clinical application [4], generation of μ-map is still crucial in
order to obtain accurate PET quantification results [5, 6].

Different approaches are used for PET attenuation
correction. They can be divided into two broad classes of
methods: emission-based methods and transmission-based
methods. Among the first class of methods, using time-of-
flight (TOF) emission data has found success in determina-
tion of attenuation factors [7, 8]. Transmission-based
methods remain the most popular approach in PET imaging.
In hybrid PET/X-ray computed tomography (CT) systems,
the μ-map is generated by measuring the distribution of
electron density across the object from CT data. Because of
the limited physical space inside the PET/MRI gantry, it is
not practical to insert a CT scanner in PET/MRI gantry and
use these direct measurements in PET attenuation correction
[3, 9]. In addition, using external CT images for generation
of μ-map leads to misregistration artifact and increases
patient dose. Therefore, studies have focused on using MR
images to produce μ-maps in hybrid PET/MRI systems [10–
12].

Magnetic resonance-based attenuation correction
(MRAC) is a challenging issue, because MRI represents
information about proton density and relaxation time of
tissues rather than electron density. Reviewing MRI-based
attenuation correction methods reveals that generation of μ-
maps from MR images mainly fall into two categories: (I)
template-based methods [13, 14] and (II) segmentation-
based methods [10, 15, 16]. In template-based methods, the
template MRI is registered to the patient MRI data. Then, the
derived transformation is used to transform the template μ-
map into the patient μ-map. Template-based methods are
capable to yield a continuous μ-map including a range of
attenuation coefficients [17]; however, they are prone to
error because of patient anatomic variation, especially in
sinusoidal regions of head area. In segmentation-based
methods, μ-maps are directly derived from patient MRI in
two steps: first, MRI images are classified into different
tissues with different attenuation properties. Then,
corresponding attenuation coefficients are assigned to each
class [10, 15, 16].

While MRI is capable of providing high contrast between
different soft tissues, it is not possible to distinguish air and
bone areas using conventional MRI. The T2* relaxation time
of the cortical bone tissue is very short so that bone signals
decay before being detected by the receiver coils. Since there
is a large difference between attenuation properties of the
bone and air, it seems crucial to find a way to differentiate
these classes in segmentation-based methods. It has been
shown that ignoring bone regions in the μ-map leads to
quantification error for PET data of up to 17 % in whole-
body imaging [18] and up to 25 % in the head area [19].

Recently, a dedicated technique, named ultra-short echo
time (UTE) pulse sequence, has been introduced to
overcome the problem of bone detection in MRI-based

PET attenuation correction [20–23]. Although combining
UTE pulse sequence with the conventional counterpart is
able to yield an extra bone class in the generated μ-map in
511 keV, it is not accessible in conventional MRI systems.
In addition, implementation of UTE sequences is expensive
and complicated, making whole-body imaging difficult and
time-consuming.

The authors of this article have previously investigat-
ed that using short echo time (STE) pulse sequences
could be a potential alternative for UTE pulse sequences
to derive bone class in MRAC of PET data in the head
region [24]. STE pulse sequences are commercially
available on conventional MRI systems, and they cost
less than UTE sequences. However, the ability of STE
sequences in detecting bone signals is less than that of
UTE sequences. To reach more accurate results of STE
sequences, a segmentation method based on fuzzy C-
means (FCM) clustering was proposed to distinguish
bone voxels in MRI images [25].

In this study, the new STE/Dixon pulse sequence is
combined with a dedicated segmentation protocol based on
FCM clustering and morphologic operations to segment
MRI images into four classes of the cortical bone, soft tissue,
fat tissue, and air and to derive MRI-based μ-map in
511 keV. In addition, unlike previous studies conducted by
the authors in this area, CT images are acquired in the
present study to accurately assess the strategy and to avoid
the potential bias of specialist recognition. Therefore, results
are quantitatively assessed based on five datasets and using
CT images to generate reference μ-maps in validation
strategy.

Materials and Methods
MR Imaging

A prototype STE/MR dataset was acquired to evaluate the amount
of signal-to-noise ratio in STE images and in comparison with long
echo time (LTE) images from two-point Dixon pulse sequences.
Measurements were acquired on a 1.5T MRI system, MAGN
ETOM Avanto (Siemens Medical Solutions, Erlangen, Germany).
To achieve more signal and less noise, voxel size was selected to be
relatively large (1.86×1.86×1.63 mm3). In this case, minimum
echo time was acquired (TE=0.8 ms). The number of excitation
and repetition time (TR) was considered 5 and 8 ms, respectively,
so that acquisition time was about 220 s. A corresponding Dixon
pulse sequence was applied with the exact same parameters, except
for the echo time to be 4.76 ms.

The ultimate MRI protocol, including a combination of STE and
Dixon pulse sequences, was applied on the head regions of five
volunteers to clinically evaluate the ability of the STE/Dixon
technique to yield four-class attenuation maps. Two consecutive
pulse sequences, STE technique based on FLASH 3D pulse
sequences (echo time, 1.1 ms; repetition time, 12 ms; voxel size,
1.2×1.2×2 mm3; acquisition time, 462 s) and Dixon technique for
fat and water decomposition (echo time 1, 2.38 ms; echo time 2,
4.76 ms; repetition time, 12 ms; voxel size, 1.2×1.2×2 mm3;

P. Khateri et al.: MRI-Based Attenuation Map for PET Data Using STE/Dixon and FCM 885



acquisition time, 462 s), were applied. Therefore, three MRI
datasets for each volunteer were available: STE (from STE
technique), in-phase, and out-of-phase images (from Dixon
technique).

CT Imaging

In order to evaluate MR-based μ-maps, CT images were used to
generate reference μ-map in 511 keV. Considering this fact that
normal volunteers were asked to receive MR imaging, ultra-low-dose
CT (ULDCT) imaging protocol (80 kVp, 10 mA, and 0.5 s rotation
time) was proposed [26, 27] so that the total effective dose exposed to
each person would be in the safe range according to the International
Commission on Radiological Protection (ICRP) report 103 [28].

The “ImPACT CT Patient Dosimetry Calculator” (version 0.99x
20/01/06) software was used to simulate ULDCT and calculate the
total effective dose imposed to each volunteer during CT imaging.
The amount of total effective dose of ULDCT was compared to that
of the typical CT imaging with 140 kVp, 140 mA, and 1 s rotation
time. The total effective dose of ULDCT was calculated as
0.008 mSv about 0.4 % of the total effective dose of the typical
CT imaging (2.1 mSv). This amount is less than 0.01 mSv that is
determined by ICRP as the negligible individual dose. The
proposed ULDCT protocol was approved by the Ethical Committee
of Tehran University of Medical Sciences (Ethic license number
1432), and all volunteers, who were well educated about medical
imaging systems, gave their written informed consent for partici-
pation. In the next step, five volunteers with available MR images
experienced ULDCT scan on the CT module of Discovery 690
PET/CT scanner (GE Healthcare, Waukesha, WI).

Generation of μ-Maps from MR Images

A four-class μ-map including the cortical bone, soft tissue, fat
tissue, and air regions was derived from MR images. The image
analysis protocol was mainly performed by an in-house-developed
software written in MATLAB (The MathWorks, Inc.). The open-
source image processing software 3D slicer (http://www.slicer.org/)
was also used to denoise MR images and generate manual masks
for some central regions of the head containing cerebrospinal fluid
(CSF).

Steps for this generation of attenuation map (u-map) from MR
images are illustrated in Fig. 1, as follows:

Step 1 MR images underwent an anisotropic diffusion filtering
in order to reduce the noise level while maintaining
edge information of images. Water and fat images were
calculated from in-phase and out-of-phase images.

Step 2 Two fuzzy clusters were obtained from each series
of fat and water images. Because fat and water
images represent, respectively, fat and water
voxels with higher intensity, applying fuzzy
clustering to fat and water images leads to clusters
in which fat and water regions are more high-
lighted. Since in-phase images contain only
signals of the soft tissue, i.e., water and fat
tissues, these images were used to derive fuzzy

soft clusters. Thus, the intersection of soft cluster
and water cluster yielded water mask, and the
intersection of soft cluster and fat cluster yielded
fat mask.

Step 3 The opening morphologic filter was employed on STE
images to reduce susceptibility artifact in regions of air-
bone neighboring [29]. Obtained filtered images
underwent FCM technique and resulted in four fuzzy
clusters. One of them was identified as the air cluster in
which air regions were highlighted. Air masks then
emerged from air clusters. The remaining voxels that
were not included in fat, water, and air masks were
considered as bone voxels.

Step 4 Because the image processing method was based
on voxel intensity, areas with the same intensity
but different attenuation properties suffer from
misclassification. This problem was observed in
internal brain regions which were misclassified
as bone. Since misclassified brain tissues were
far away from bone regions, they could be
accurately distinguished from bone class. There-
fore, a manual mask using 3D slicer software
was generated to exclude the brain tissue from
bone mask.

Step 5 A closing morphologic operation was applied on
segmented bone regions in order to adjoin the area
of discontinuities [29], followed by a dilating
morphologic operation to bold bone regions, be-
cause bone regions are depicted smaller than their
actual size in MR images.

Step 6 After segmentation of MRI images into four classes
of bone, water, fat, and air, μ-maps were generated
by assigning corresponding attenuation coefficients
in 511 keV to each class. Tissue attenuation
coefficients were calculated using tissue mass atten-
uation coefficients and average tissue densities
obtained from the International Commission on
Radiation Units and Measurements (ICRU) 44 report
[30]. Then, μ-maps were down-sampled and
smoothed by a Gaussian filter with 5 mm full width
at half maximum to be matched with the resolution
of PET images.

Generation of μ-Maps from CT Images

In the first step, the CT images were registered to the MRI
images in order to minimize the misregistration between
generated μ-maps from CT and MRI images. Thereafter, the
CT images were segmented into three classes of bone, soft
tissue, and air regions using a simple thresholding method. The
thresholds were set as 550 and −350 HU by plotting CT image
histogram. After segmentation, corresponding attenuation coef-
ficients in 511 keV (calculated based on ICRU 44 report) were
assigned to regions with different attenuation properties. Then,
CT-based μ-maps were derived by down-sampling and
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smoothing (using Gaussian filter with 5 mm full width at half
maximum) the segmentation results.

MRI and CT Registration

CT images were registered to MR images using FSL Linear Image
Registration Toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT).
A 3D registration was performed using affine transformation model
and trilinear interpolation technique. The cost function was selected
to be normalized mutual information (NMI), which is suitable for
multimodal image registration. Prior to registration, a brain mask
was created for CT images using “Chan-Vese” active contour
segmentation method to eliminate unnecessary information from
the head area, such as background details with similar intensities to
those of the brain tissue, and to achieve better alignment with MR
images. The active contour snake function evolves over several
iterations to capture the border of the head and to separate it from
the surrounding area. The region inside the captured border was
used as a mask which consequently was multiplied by the
corresponding CT image.

Evaluation Strategy

SNR Measurement

Signal-to-noise ratio (SNR) was calculated in six different regions
of interest (ROIs) of bone regions selected by an expert radiologist.
To calculate SNR, average signal of each ROI was divided by the
average noise of the near background area. For a reasonable
comparison, the same calculation was performed in adjacent soft
tissue ROIs. These measurements were performed on two STE and
LTE datasets, as depicted in Fig. 2. Then, SNR of the bone was
divided to SNR of the adjacent soft tissue. This ratio was obtained
to consider soft tissue SNR as reference, while comparing the bone
SNR of the two STE and LTE datasets.

Quantitative Assessment

Fifteen slices of each dataset with a distance of about three slices
from each other were considered to be analyzed in the evaluation
strategy. To assess segmentation method and to quantify the
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Fig. 1 Generation of MR-based μ-maps by manipulating STE and Dixon images.
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similarity between CT-based and MR-based segmentation results,
the values of sensitivity, specificity, and accuracy were calculated
performing a voxel-by-voxel comparison between segmentation
results, and as follows:

Sensitivity ¼ TP

FNþ TPð Þ
Specificity ¼ TN

FPþ TNð Þ
Accuracy ¼ TPþ TNð Þ

FNþ TPþ FPþ TNð Þ

CT-based segmentation results were considered as reference
images to calculate values of true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). These three values
were calculated for three classes of the soft tissue (integration of fat
and water tissue classes), cortical bone, and air. It should be noted
that ULDCT images were not considered as reference to assess fat-
water decomposition, since two-point Dixon sequence is a standard
method to differentiate between fat and water.

The overall accuracy of STE/Dixon-based segmentation results
was calculated by performing a voxel-by-voxel comparison to the
segmented CT-based segmentation results. For each class on the
CT-based segmentation results, the percentage of voxels that was
assigned to the correct and incorrect classes was calculated.

Correlation Plot

To assess the similarity (in the form of correlation) between MR-
based and CT-based μ-maps, joint histogram was plotted. The
histograms of μ-maps of all slices for each CT and MR dataset
were integrated in two arrays to plot a total joint histogram and to
calculate average correlation coefficient between MR-based and

CT-based μ-maps. The attenuation correction factor (ACF) sino-
grams were generated by forward projection of generated μ-maps
followed by an exponential transform. Then, the correlation
between MR-based and CT-based ACF sinograms was measured.

Results
STE/Dixon-MRI and CT examinations were performed in all
participant volunteers successfully. Prototype MRI dataset
with larger voxel size undergone the SNR measurement.
Table 1 illustrates SNR measurements of cortical bone and
soft regions for both STE and LTE images.

Exemplary slices for areas of different complexities of
acquired MR images including STE, fat, and water images,
as well as the corresponding registered CT images, are
illustrated in Fig. 3.

Segmentation results, corresponding μ-maps, and the
difference between MR and CT results for the same slices
in Fig. 3 are shown in Figs. 4 and 5.

The quantitative assessment for the three classes of the
cortical bone, soft tissue, and air region are summarized in
Table 2. Average values of accuracy (Ac.), specificity (Sp.),
and sensitivity (Sen.) across five datasets were calculated in
comparison with CT data. Values of accuracy and specificity
were more than 95 % for all three classes; however, the
average value of sensitivity was calculated 75 % for the
cortical bone and more than 90 % for other classes.

An overall evaluation of the classification accuracy was
performed to investigate the true fraction of classified voxels
compared with CT images. For each class of the cortical
bone, soft tissue, and air region, the fraction of voxels that
were assigned to the true or false classes was determined.
The average of these fractions is illustrated in Fig. 6.

In order to evaluate μ-maps and their effect on recon-
struction process of PET imaging, the correlation between
MR and CT μ-maps and ACF sinograms were calculated.
The correlation coefficient for both μ-maps and ACF
sinograms of the less complex sample slice (as shown in
Fig. 3) was calculated as 0.99. The more complicated slices
yielded the correlation coefficients of 0.98 and 0.96 for μ-
maps and ACF sinograms, respectively. As it was expected,
results show more similarity in data with less complexity.

To achieve an overall view, all 15 MRI-based and CT-
based μ-maps of each dataset were integrated in two arrays,
and the correlation between them was calculated. The same
assessment was conducted for ACF sinograms (Fig. 7).

Fig. 2 STE and corresponding LTE images. Six pairs of ROIs
of the bone and soft tissue were selected to evaluate the
bone SNR.

Table 1. Quantitative assessment results for bone segmentation considering
radiologist bone extraction as reference

Tissue class Average SNR SNRbone
SNRsoft tissue

STE Bone 99.0 0.6
Soft tissue 163.7

LTE Bone 7.1 0.1
Soft tissue 71.3

888 P. Khateri et al.: MRI-Based Attenuation Map for PET Data Using STE/Dixon and FCM



Results yielded an overall correlation coefficient of 0.98 and
0.97 for integrated μ-maps and ACF sinograms over 15
slices.

Discussion
This study was motivated by proposing STE pulse sequence
in bone signal detection from MRI data to derive the cortical
bone as a separate class in PET attenuation correction. SNR
ratio of bone to soft tissue was calculated to obtain a
measure which indicates the STE pulse sequence ability to
detect bone signal relative to the LTE pulse sequence. This
ratio increases six times for STE images relative to LTE
images which shows an increase in detection of bone signal
in STE sequences.

In this study, the use of STE/MRI along with a robust
image analysis method for generation of PET μ-maps was
evaluated on five datasets of normal volunteers in compar-
ison with CT images. Results indicate a good agreement
between CT- and MR-based μ-maps. Different images
between CT and MRI segmentation results, as well as
the μ-maps, represented that ethmoid sinuses are the
most error-prone regions of the head area. The largest
difference was observed about 0.05 cm−1 in the paranasal
area. This amount could be attributed to the MRI
susceptibility artifact. Although in this study morphologic
operations were applied on MRI images to reduce
susceptibility error, using atlas-based susceptibility arti-
fact correction methods could be a potential solution to
prevent error in the sinus area [31].

Fig. 3 a CT images and corresponding MRI data including b
STE, c water, and d fat images are illustrated. Example slices
of varying complexities are shown.

Fig. 4 Segmentation results derived from a CT images, b MRI and c the difference between segmentation results for the same
slices of Fig. 3 are illustrated.
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A previous study conducted by the authors of this study
[25] used radiologist specialists to predict bone class as
reference in the validation strategy. In this study, CT images
were acquired to accurately go through the assessment
strategy and to avoid the potential bias of specialist
recognition. CT images paved the way to classify the head
area into classes of the cortical bone, soft tissue, and air and
to evaluate the ability of STE/MRI to provide accurate μ-
maps in 511 keV.

Visual comparison of results indicates that generation of
μ-maps from segmentation results, i.e., down-sampling and
smoothing, increases similarity between MR and CT results,
so that for the area of low complexity, the different images
show no difference between MR and CT μ-maps. It is also
observed in different images that areas of more complexity
represent more error in the sinusoidal region in comparison
with CT results.

Quantification assessment yielded an average value of
more than 95 % for specificity and accuracy for all classes.
Therefore, the current method is capable of classifying
different tissue types in PET μ-maps. These values con-
firmed previously published results [25] and showed that a
combination of STE pulse sequence with a robust image
processing method based on the FCM technique can be a
potential alternative for UTE/MRI in PET attenuation
correction.

The amount of sensitivity for the bone class was reported to
be about 75 %. At first glance, it may seem that susceptibility
artifact in the vicinity of bone tissue causes this area to be more
error prone rather than other classes. This is rarely true, and the
main reason is the small fraction of bone voxels in relation to
other classes in the investigated area. In other words, since the
number of bone voxels is very few, small variations in this
number cause big changes in the sensitivity.

Fig. 5 μ-maps derived from a CT b and MRI images and c the difference between μ-maps for the same slices of Fig. 3 are
illustrated.

Table 2. Quantitative assessment results for three classes of cortical bone, soft tissue, and air

Segmented class Cortical bone Soft tissue Air

Parameter Ac. Sp. Sen. Ac. Sp. Sen. Ac. Sp. Sen.

Average value 0.96 0.97 0.75 0.95 0.97 0.95 0.96 0.98 0.92

Ac. Accuracy, Sp. Specificity, Sen. Sensitivity
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The segmentation method of this study was based on
FCM technique in which voxel intensity is considered to
identify different classes. It would be useful to use region-
based segmentation methods along with intensity-based
methods like FCM to avoid manual intervention and to
implement automated classification in the area with the same
intensity but different attenuation properties. Using CT
images as reference was subject to misregistration error,
because CT volumes were acquired on a separate CT system
located far from the MRI system. Thus, motion artifact and
different field of views potentially imposed a small bias in
image registration.

The correlation coefficient between MRI-based and CT-
based μ-maps indicates a high amount of about R290.95
which shows a good agreement between results. To
compensate the lack of access to PET images, ACF
sinograms were also calculated from μ-maps to assess the
impact of generated μ-maps on PET reconstruction. Like-
wise, results reported a high correlation between ACF

sinograms showing that the impact of attenuation correction
using STE/MRI and CT images would be very similar. It
would be interesting to evaluate the impact of the proposed
MRI-based attenuation correction on PET quantification data
by simultaneous PET/MRI systems.

Visual assessment of segmentation results and generated
μ-maps showed that there is still misclassification in
complicated regions like ethmoid sinuses; however, recent
studies that investigated the impact of UTE/MRI on PET
attenuation correction also showed the same misclassifica-
tion in complex area where air and bone are adjacent or in
CSF regions [20, 22].

Based on the voxel-wise comparison between the
segmentation results of MRI and CT images, our method
was able to classify air from the tissue with the overall
accuracy of about 92 %. In other words, 92 % of air voxels
were correctly classified (Fig. 6). The highest misclassifica-
tion was observed between bone and soft tissue; 24 % of
bone voxels were misclassified as soft tissue, and about 4 %
of soft tissue voxels were assigned as cortical bone. A recent
study by Vincent Keereman investigating the UTE-based
attenuation correction [32] reported an incorrect classifica-
tion of 25 % for bone voxels as soft tissue and 20 % for soft
tissue voxels as bone.

Conclusion
The current STE-MRI-based attenuation correction intro-
duces an innovative approach for attenuation correction
of PET data in hybrid PET/MRI systems. As a
consequence, implementation of the proposed approach
can be a good alternative for UTE-based MRAC in
attenuation of PET data for conventional MRI systems.
The validation strategy based on a comparison of the
proposed MRAC method to CTAC as reference repre-
sents high similarity between two datasets.

Fig. 6 An overall evaluation to investigate the fraction of true
and false classified voxels is shown.
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